≫ 内部学生のページ

駒場生の皆さん、物理工学科へぜひお越しください。

駒場生の皆さん、物理工学科へぜひお越しください。

  • 2018年度 進学ガイダンスブックダウンロードはこちら
  • Pick UP!!
  • 物工Youtubeチャンネル
  •  
  • お知らせ
  • 談話会・セミナー
  • 永長直人教授 第59回藤原賞 受賞
    2018.06.15
  •  
  • 物理工学専攻の永長直人教授が第59回藤原賞を受賞しました。
    同賞は、公益財団法人藤原科学財団より科学技術の発展に卓越した貢献をした日本国籍を持つ功労者に贈られる記念賞で、物理・数学、工学、化学、生物・農学、医学の5分野から毎年2名が選出されます。
    受賞の対象となった研究業績は「トポロジカル物性の理論的研究」です。平成30年6月15日(金)に学士会館にて贈呈式が行われました。

    ・公益財団法人藤原科学財団 藤原賞

  • 第17回 物理工学科教室談話会(講師:Prof. Dr. Amir Yacoby )
    2018.02.16
  •  
  • 日時:平成30年2月21日(水)11:00~12:00
    場所:工学部6号館1階103号室(大会議室)
    講師:Prof. Dr. Amir Yacoby
    所属:HARVARD UNIVERSITY
    題目:”A New Spin on Superconductivity”

    Abstract:
    Nearly a hundred years after its discovery, superconductivity remains one of the most intriguing phases of matter. In 1957 Bardeen, Cooper and Schrieffer(BCS) presented their theory of superconductivity describing this state interms of pairs of electrons arranged in a spatially isotropic wave function with no net momentum and a spin singlet configuration. Immediately thereafter, a search began to find materials with unconventional superconductivity where pairing deviates from conventional BCS theory. One particular class of unconventional superconductors involves pairs arranged in triplet rather than singlet configurations. Such superconductors may enable dissipationless transport of spin and may also give rise to elementary excitations that do not obey the conventional Fermi or Bose statistics but rather have non-Abelian statistics where the exchange of two particles transforms the state of the system into a new quantum mechanical state.
    In this talk I will describe some of our recent work that explores the proximity effect between a conventional superconductor and a semiconductor with strong spin-orbit interaction. Using supercurrent interference, we show that we can tune the induced superconductivity continuously from conventional to unconventional that is from singlet to triplet. Our results open up new possibilities for exploring unconventional superconductivity as well as provide an excitingnewpathway for exploring non-Abelianexcitation.

    紹介教員:樽茶 清悟 教授(物理工学専攻)、中村 泰信 教授(物理工学専攻)

お知らせ
  • 永長直人教授 第59回藤原賞 受賞
    2018.06.15
  •  
  • 物理工学専攻の永長直人教授が第59回藤原賞を受賞しました。
    同賞は、公益財団法人藤原科学財団より科学技術の発展に卓越した貢献をした日本国籍を持つ功労者に贈られる記念賞で、物理・数学、工学、化学、生物・農学、医学の5分野から毎年2名が選出されます。
    受賞の対象となった研究業績は「トポロジカル物性の理論的研究」です。平成30年6月15日(金)に学士会館にて贈呈式が行われました。

    ・公益財団法人藤原科学財団 藤原賞

  • 【教養学部生対象】丁友会主催 工学部 学科ガイダンス[6/13(水)]
    2018.06.07
  •  
  • 日 時:平成30年6月13日(水)17:00-20:00
    場 所:駒場食堂部2F ダイニング銀杏(北側)

    進学選択について考えている駒場生向けのガイダンスです。
    物理工学科ブースにて、教員と先輩学生がお待ちしております。

    ・工学部学科ガイダンスポスター(PDF)

もっと詳しく

談話会・セミナー
  • 第17回 物理工学科教室談話会(講師:Prof. Dr. Amir Yacoby )
    2018.02.16
  •  
  • 日時:平成30年2月21日(水)11:00~12:00
    場所:工学部6号館1階103号室(大会議室)
    講師:Prof. Dr. Amir Yacoby
    所属:HARVARD UNIVERSITY
    題目:”A New Spin on Superconductivity”

    Abstract:
    Nearly a hundred years after its discovery, superconductivity remains one of the most intriguing phases of matter. In 1957 Bardeen, Cooper and Schrieffer(BCS) presented their theory of superconductivity describing this state interms of pairs of electrons arranged in a spatially isotropic wave function with no net momentum and a spin singlet configuration. Immediately thereafter, a search began to find materials with unconventional superconductivity where pairing deviates from conventional BCS theory. One particular class of unconventional superconductors involves pairs arranged in triplet rather than singlet configurations. Such superconductors may enable dissipationless transport of spin and may also give rise to elementary excitations that do not obey the conventional Fermi or Bose statistics but rather have non-Abelian statistics where the exchange of two particles transforms the state of the system into a new quantum mechanical state.
    In this talk I will describe some of our recent work that explores the proximity effect between a conventional superconductor and a semiconductor with strong spin-orbit interaction. Using supercurrent interference, we show that we can tune the induced superconductivity continuously from conventional to unconventional that is from singlet to triplet. Our results open up new possibilities for exploring unconventional superconductivity as well as provide an excitingnewpathway for exploring non-Abelianexcitation.

    紹介教員:樽茶 清悟 教授(物理工学専攻)、中村 泰信 教授(物理工学専攻)

  • もっと詳しく
  • [開催中止]第13回 物理工学科教室談話会(講師:Leonardo Civale氏)
    2017.12.11
  •  
  • ●本日の談話会は開催中止になりました。

    日時 : 平成29年12月11日(月) 15 :00

    場所:工学部6号館大会議室
    講師:Leonardo Civale氏
    所属:Materials Physics and Applications Division, CMMS, Los Alamos National Laboratory, Los Alamos, USA
    題目:What is the lowest possible vortex creep in superconductors, and how can we achieve it?
    概要:
    Thermal and quantum fluctuations play only a minor role on the vortex properties of many conventional LTS. However, they dramatically influence vortex matter in HTS such as oxides and Fe-based, creating a proliferation of vortex liquid phases that occupy substantial portions of the phase diagram and fast dynamics of the metastable states (flux creep). This fascinating physics has been a topic of continuous interest for decades, but on the other hand is detrimental for applications. The strength of the thermal fluctuations is quantified by the Ginzburg number (Gi) that measures the ratio of the thermal energy to the condensation energy in an elemental superconducting volume. The combination of the small coherence length (x), large anisotropy (g) and high transition temperatures (Tc) in the HTS results in Gi values several orders of magnitude higher than in LTS. For instance, Gi ~ 10-9 in Nb and ~ 10-2 in YBa2Cu3O7, naturally accounting for the much faster creep rate (S) in the latter. We have found that, for strong pinning superconductors in the Anderson-Kim (A-K) creep regime, there is a universal minimum attainable S ~ Gi1/2(T/Tc). This lower limit has been achieved in a few materials including YBa2Cu3O7, MgB2 and our BaFe2(As0.67P0.33)2 films and, to our knowledge, violated by none. This hard constraint has two important, broad implications: first, the creep problem in HTS cannot be fully eliminated and there is a limit to how much it can be ameliorated, and secondly, we can confidently predict that any yet-to-be-discovered HTS will have fast creep. On the other hand, many SC exhibit S values higher, sometimes orders of magnitude higher, than the lower limit. The reason is that Gi only sets the lowest limit for S, but in order to achieve it the pinning landscape must be optimized. I will show that S can be reduced by appropriate engineering of the pinning landscape, in some cases (such as in irradiated Ba(Fe1-xCox)2A2 single crystals) dramatically so and all the way down to the lower limit imposed by Gi. Finally I will discuss some of our studies of creep outside the A-K limit and in very clean (weak pinning) samples, where collective effects are relevant and different glassy and plastic dynamic regimes can be observed and tuned by methods such as irradiation and film thinning.

    紹介教員: 鹿野田 教授、為ヶ井 准教授

  • もっと詳しく

もっと詳しく