≫ 内部学生のページ

駒場生の皆さん、物理工学科へぜひお越しください。

駒場生の皆さん、物理工学科へぜひお越しください。

  • 2017年度 進学ガイダンスブックダウンロードはこちら
  • Pick UP!!
  • 物工Youtubeチャンネル
  •  
  • お知らせ
  • 談話会・セミナー
  • 【教養学部生対象】物理工学科見学会のお知らせ[4/14(土)]
    2018.02.16
  •  
  • 教養学部生を対象とした物理工学科見学会を開催しますので、興味のある方は是非ご参加下さい。事前申し込みは不要です。

    日   時:平成30年4月14日(土)14:00-16:40
    集合場所:本郷キャンパス工学部6号館1階大会議室
    プログラム:
    14:00-14:15 学科紹介:学科長 求 幸年 教授
    14:15-15:35 研究室見学(各20分)
    十倉研究室 途方もない可能性を秘めた強相関電子系
    川﨑研究室 21世紀のエレクトロニクスや情報産業を支える金属酸化物
    樽茶研究室 電子一つでできている半導体と情報
    古澤研究室 量子コンピューターをつくる
    15:40-16:40 先輩学生との懇親会(10名程度の大学院生が参加予定)

  • 第17回 物理工学科教室談話会(講師:Prof. Dr. Amir Yacoby )
    2018.02.16
  •  
  • 日時:平成30年2月21日(水)11:00~12:00
    場所:工学部6号館1階103号室(大会議室)
    講師:Prof. Dr. Amir Yacoby
    所属:HARVARD UNIVERSITY
    題目:”A New Spin on Superconductivity”

    Abstract:
    Nearly a hundred years after its discovery, superconductivity remains one of the most intriguing phases of matter. In 1957 Bardeen, Cooper and Schrieffer(BCS) presented their theory of superconductivity describing this state interms of pairs of electrons arranged in a spatially isotropic wave function with no net momentum and a spin singlet configuration. Immediately thereafter, a search began to find materials with unconventional superconductivity where pairing deviates from conventional BCS theory. One particular class of unconventional superconductors involves pairs arranged in triplet rather than singlet configurations. Such superconductors may enable dissipationless transport of spin and may also give rise to elementary excitations that do not obey the conventional Fermi or Bose statistics but rather have non-Abelian statistics where the exchange of two particles transforms the state of the system into a new quantum mechanical state.
    In this talk I will describe some of our recent work that explores the proximity effect between a conventional superconductor and a semiconductor with strong spin-orbit interaction. Using supercurrent interference, we show that we can tune the induced superconductivity continuously from conventional to unconventional that is from singlet to triplet. Our results open up new possibilities for exploring unconventional superconductivity as well as provide an excitingnewpathway for exploring non-Abelianexcitation.

    紹介教員:樽茶 清悟 教授(物理工学専攻)、中村 泰信 教授(物理工学専攻)

お知らせ
  • 【教養学部生対象】物理工学科見学会のお知らせ[4/14(土)]
    2018.02.16
  •  
  • 教養学部生を対象とした物理工学科見学会を開催しますので、興味のある方は是非ご参加下さい。事前申し込みは不要です。

    日   時:平成30年4月14日(土)14:00-16:40
    集合場所:本郷キャンパス工学部6号館1階大会議室
    プログラム:
    14:00-14:15 学科紹介:学科長 求 幸年 教授
    14:15-15:35 研究室見学(各20分)
    十倉研究室 途方もない可能性を秘めた強相関電子系
    川﨑研究室 21世紀のエレクトロニクスや情報産業を支える金属酸化物
    樽茶研究室 電子一つでできている半導体と情報
    古澤研究室 量子コンピューターをつくる
    15:40-16:40 先輩学生との懇親会(10名程度の大学院生が参加予定)

  • 【大学院入学希望者対象】平成31(2019)年度 物理工学専攻 大学院入試説明会[4/14(土),6/16(土)]
    2018.02.15
  •  
  • 平成31(2019)年度大学院入試説明会及び研究室見学会を下記の通り開催します。物理工学専攻に興味のある方はぜひご参加下さい。(事前申込不要)

    日  時:[第1回] 平成30年4月14日(土)13:00より
         [第2回] 平成30年6月16日(土)13:00より

    場  所:本郷キャンパス 工学部6号館3階セミナー室A

    当日の予定:
        13:00~ 専攻紹介、入試の説明
        13:20~ 研究所の紹介〔物性研究所,生産技術研究所〕
        13:50~ オープンハウス形式の研究室見学会(17:00頃終了予定)

もっと詳しく

談話会・セミナー
  • 第17回 物理工学科教室談話会(講師:Prof. Dr. Amir Yacoby )
    2018.02.16
  •  
  • 日時:平成30年2月21日(水)11:00~12:00
    場所:工学部6号館1階103号室(大会議室)
    講師:Prof. Dr. Amir Yacoby
    所属:HARVARD UNIVERSITY
    題目:”A New Spin on Superconductivity”

    Abstract:
    Nearly a hundred years after its discovery, superconductivity remains one of the most intriguing phases of matter. In 1957 Bardeen, Cooper and Schrieffer(BCS) presented their theory of superconductivity describing this state interms of pairs of electrons arranged in a spatially isotropic wave function with no net momentum and a spin singlet configuration. Immediately thereafter, a search began to find materials with unconventional superconductivity where pairing deviates from conventional BCS theory. One particular class of unconventional superconductors involves pairs arranged in triplet rather than singlet configurations. Such superconductors may enable dissipationless transport of spin and may also give rise to elementary excitations that do not obey the conventional Fermi or Bose statistics but rather have non-Abelian statistics where the exchange of two particles transforms the state of the system into a new quantum mechanical state.
    In this talk I will describe some of our recent work that explores the proximity effect between a conventional superconductor and a semiconductor with strong spin-orbit interaction. Using supercurrent interference, we show that we can tune the induced superconductivity continuously from conventional to unconventional that is from singlet to triplet. Our results open up new possibilities for exploring unconventional superconductivity as well as provide an excitingnewpathway for exploring non-Abelianexcitation.

    紹介教員:樽茶 清悟 教授(物理工学専攻)、中村 泰信 教授(物理工学専攻)

  • もっと詳しく
  • [開催中止]第13回 物理工学科教室談話会(講師:Leonardo Civale氏)
    2017.12.11
  •  
  • ●本日の談話会は開催中止になりました。

    日時 : 平成29年12月11日(月) 15 :00

    場所:工学部6号館大会議室
    講師:Leonardo Civale氏
    所属:Materials Physics and Applications Division, CMMS, Los Alamos National Laboratory, Los Alamos, USA
    題目:What is the lowest possible vortex creep in superconductors, and how can we achieve it?
    概要:
    Thermal and quantum fluctuations play only a minor role on the vortex properties of many conventional LTS. However, they dramatically influence vortex matter in HTS such as oxides and Fe-based, creating a proliferation of vortex liquid phases that occupy substantial portions of the phase diagram and fast dynamics of the metastable states (flux creep). This fascinating physics has been a topic of continuous interest for decades, but on the other hand is detrimental for applications. The strength of the thermal fluctuations is quantified by the Ginzburg number (Gi) that measures the ratio of the thermal energy to the condensation energy in an elemental superconducting volume. The combination of the small coherence length (x), large anisotropy (g) and high transition temperatures (Tc) in the HTS results in Gi values several orders of magnitude higher than in LTS. For instance, Gi ~ 10-9 in Nb and ~ 10-2 in YBa2Cu3O7, naturally accounting for the much faster creep rate (S) in the latter. We have found that, for strong pinning superconductors in the Anderson-Kim (A-K) creep regime, there is a universal minimum attainable S ~ Gi1/2(T/Tc). This lower limit has been achieved in a few materials including YBa2Cu3O7, MgB2 and our BaFe2(As0.67P0.33)2 films and, to our knowledge, violated by none. This hard constraint has two important, broad implications: first, the creep problem in HTS cannot be fully eliminated and there is a limit to how much it can be ameliorated, and secondly, we can confidently predict that any yet-to-be-discovered HTS will have fast creep. On the other hand, many SC exhibit S values higher, sometimes orders of magnitude higher, than the lower limit. The reason is that Gi only sets the lowest limit for S, but in order to achieve it the pinning landscape must be optimized. I will show that S can be reduced by appropriate engineering of the pinning landscape, in some cases (such as in irradiated Ba(Fe1-xCox)2A2 single crystals) dramatically so and all the way down to the lower limit imposed by Gi. Finally I will discuss some of our studies of creep outside the A-K limit and in very clean (weak pinning) samples, where collective effects are relevant and different glassy and plastic dynamic regimes can be observed and tuned by methods such as irradiation and film thinning.

    紹介教員: 鹿野田 教授、為ヶ井 准教授

  • もっと詳しく

もっと詳しく