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Problem 1

A magnetic material experiences a force in a non-uniform magnetic field. Based on this phe-

nomenon, we construct a magnetometer to measure the magnetic moment of a sample. As shown

in Fig. 1, we consider a cylindrical stick of uniform density, which never deforms, with radius a,

length ly, and mass M. We define two points on the central axis of the cylindrical stick: P at the
end of the stick, and O away from P by the length I; (> ly/2). We define z-, y-, and z-axes as

shown in Fig. 1, where +z is the vertical upward direction. Let the stick rotate with the axis of

rotation being a line that passes through O and that is parallel to the y-axis. Let 8 be the tilting

angle of the stick measured from the vertical downward direction, as in Fig. 1. We neglect the air

friction and the friction at O. Answer the following Questions.

[

Firstly, we find the moment of inertia of the stick.

[1.1] Find the moment of inertia I; when the axis of rotation is the central axis of the cylin-
drical stick.

[1.2] We create a sufficiently thin disk of thickness Al by cutting the cylindrical stick perpen-
dicular to its central axis. Find the moment of inertia Al for the disk when the axis
of rotation passes through the center of mass and is perpendicular to the central axis of
the cylindrical stick.

[1.3] In Fig. 1, find the moment of inertia I for the stick when the axis of rotation is a line
parallel to the y-axis through O. If necessary, you can use Iz = I, + M’'R? relating the
moments of inertia I, Iy with respect to two axes a, 8 for an object of the mass M.
Here, a passes through the center of mass and 3 is parallel and shifted off by a distance
R from a.

A constant force F1(> 0) is applied along the z direction at P so that the stick keeps still
at 8 = 6y (60| < 7/2). Answer the following Questions. You can use Io as the moment of
inertia of the stick.

[2.1] Find tanfy. The gravitational acceleration constant is denoted by g.

[2.2] The stick starts to move when the force at P is abruptly removed. Find the absolute
value of the angular velocity when the stick reaches § = 0. You can use 6.

[2.3] Find the period of this motion if §y is sufficiently small.

Next, we measure the magnetic moment of a magnetic sample using this stick. Let the stick
be non-magnetic. As shown in Fig. 2, we set a sample at P. We neglect its size and mass.
Using an electromagnet sufficiently far below O, we create a static magnetic field H along the
z direction around the sample, with spatial gradient. We assume that the magnetic moment
m of the sample points along the direction of H. In this case, the force I} along the x-axis
is expressed as

OH
B o= e
! i
Here, assume F} > 0.
We keep 6 = 0 by adding the force F5(> 0) along the z-axis at the top of the stick. For

this purpose, we mount a cylindrical iron core with radius b, magnetic permeability u, and



negligible mass at the top of the stick. Along the same axis, we also set a tightly-fitted

solenoid of length X, the wire of which is wound uniformly with number of loops per length

N. The iron core moves inside the solenoid without friction. Let o and b be sufficiently small

as compared to lg and l;. Answer the following Questions.

[3.1]

[3.2]

[3.3]

(3.4]

In absence of the iron core and in presence of a steady current [ through the wire, find
the magnetic field inside the solenoid. Let X be sufficiently long, so that the magnetic
field is uniform and parallel to the solenoid axis.

The iron core is inserted into the solenoid up to a distance X/3. Find the inductance

L of the solencid. We neglect the magnetic flux and the inductance in the part of the

solenoid where the iron core is not inserted, because p is sufficiently much larger than

the vacuum permeability ug.

We measure Fy through the force Fy by which the iron core is pulled into the solenoid.
I20L

Express Fj in terms of u, N, b, I, I3, and l;. You can use Fp = ?8_5 assuming that

the magnetic field outside the solenoid is zero. Here, the iron core is inserted into the

solenoid up to a distance &.

The stick has g = 140 cm and I; = 90 cm. The solenoid has the radius & = 1.5 cm
and the number of loops per length N = 2000 m~!. The iron core has the permeability
= 6.4x10"3 N-A~2. When the gradient of the magnetic field is 1600 Oe-cm™?!, we
need the electric current I = 200 mA to keep § = 0. Therefore, the magnetic moment
of the sample in this condition is E Wb-m. Provide the number in E with 2

significant digits. Beware that Oe is a CGS unit, that you need to convert 1 Oe —

10
y A-m~! to obtain MKSA units, and that the unit of Wb is kg-m? A~1.s72,
T
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Problem 2

As shown in Fig. 1, two flat mirrors (Mirror 1 and Mirror 2) whose thickness is negligible are placed
perpendicular to the z-axis in a vacuum. The amplitude reflection coefficients of opposing surfaces
of Mirror 1 and Mirror 2 are r; and ro, respectively. Between Mirror 1 and Mirror 2, a linearly
polarized electromagnetic plane wave oscillating at a single angular frequency is propagating back
and forth along the z-axis, forming a standing wave. We define the electric field amplitude at the
antinode of the standing wave as Fy. Also, the distance between the mirrors is much longer than the
wavelength of the electromagnetic wave. The area of the mirrors irradiated by the electromagnetic
wave is large enough so that the plane wave approximation holds, and also sufficiently small as
compared to the area of the mirrors.

Here, the dielectric constant of vacuum, the magnetic permeability of vacuum, and the speed of
light in vacuum are g, ug, and c, respectively.

Ny

Figure 1

[1] Let us assume that both Mirror 1 and Mirror 2 are perfect conductors and that the amplitude
reflection coefficients are —~1 (r; = ro = —1). The positions of Mirror 1 and Mirror 2 are fixed
at zy = —% and zo = % (L > 0), respectively. Answer the following Questions.

[1.1] In the space between Mirror 1 and Mirror 2, there exist only electromagnetic waves
with discrete angular frequencies that can be specified by positive integers n. Derive an
expression for the angular frequency wy,.

[1.2] In complex number representation, the electric field and the magnetic flux density of the
standing wave at time ¢ and at the position z between Mirror 1 and Mirror 2 are given by
E.(2,t) = Re[E,(2)e™™n] and By (z,t) = Re|By(z)e~®"], respectively. Express En,(2),
Bn(z) using Ejy. Here, i is the imaginary unit.

[1.3] When the time average over one cycle is denoted as (---), the time average of the
momentum density of the electromagnetic wave (g) is expressed as,

(9) = (S, 1)
using the time average (S) of the Poynting vector S = E x H. Express the pressure
P exerted on Mirror 2 by the reflection of the electromagnetic wave between Mirror 1
and Mirror 2, using Fjy. The electric field vector E and the magnetic field vector H
can be written in terms of their complex counterparts, E and H, as E = Re[E] and
H = Re[H]. Also, (S) can be expressed as,

(S) = %Re[E‘ « H". 2)

Here, * denotes the complex conjugate.



2]

As shown in Fig. 2, we attach Mirror 2 to a wall-mounted spring whose spring constant is
k. The length of the spring is the equilibrium length when the position of Mirror 2 is 2o = %
(L > 0). Let us assume that both Mirror 1 and Mirror 2 are perfect conductors, that the
amplitude reflection coefficients are —1 (r; = ro = —1), and that the position of Mirror 1 is
fixed at 21 = —%. Mirror 2 can move along the z-axis. When the electric field amplitude at
the antinode of the standing wave is Fy and the position of Mirror 2 is z5 = % + 4, Mirror 2
does not move and is in steady state. Assuming that the area of Mirror 2 irradiated by the
electromagnetic wave is A, derive the sign of § and express its magnitude using Ej.
Mirror 1 Mirror 2

A=l o=l

As shown in Fig. 3, let us assume that the amplitude reflection coefficient of Mirror 1 is
ry = —r (% < r < 1) and its position is fixed as specified below. Mirror 2 is a perfect
conductor and the amplitude reflection coefficient is ro = —1. Mirror 2 is attached to a
spring as in the previous Question, and it can move along the z-axis. An electromagnetic
plane wave propagating toward the +z direction with angular frequency w and electric field
amplitude F; is incident on Mirror 1 from the back side of the mirror. In this case, the

amplitude transmission coefficient of Mirror 1 is v/1 — r2. Answer the following Questions.

Mirror 1 Mirror 2
n=—r r=-1

E, E, ‘
z, z, z
Figure 3

[3.1] We fix the positions of Mirror 1 at 21 = ~% (L > 0) and of Mirror 2 at zo = % Express
the electric field amplitude at the antinode of the standing wave Ej in the steady state,
using Ej.

[3.2] We fix the position of Mirror 2 at 2o = % If we choose an appropriate w and change the
position z; of Mirror 1, g—(j takes the local maximum value at z1 = —é. At z1 = ——é—i A
<A<, % becomes % of the local maximum value. Derive A. Here, we can use
the inverse trigonometric functions.

[3.3] In the situation of the previous Question, we fix the position of Mirror 1 at either (a)
21=-L% (b) 21 =-%+A, or (c) 1 = —L — A. We allow Mirror 2 to move and to make
a small-amplitude, free oscillation in the vicinity of the equilibrium point (zy = % +9).
Answer which of (a), (b), (¢) makes the effective spring constant larger than k. Also,
describe qualitatively the reasons for this. Here, we assume that § satisfies |6| < A, and
further that Ey can instantaneously follow the change in the system.



Problem 3

Answer the following Questions on the specific heat (the heat capacity per unit mass) of solids

due to lattice vibrations. Use A as the Planck constant divided by 27, and kp as the Boltzmann

constant.

[1] First, we consider M (>> 1) independent classical harmonic oscillators in one dimension with

—

mass m and natural angular frequency w. The Hamiltonian of one harmonic oscillator is
given by
P mwx

H=—
2mjL 2 (1)

with position x and momentum p.

M
1
[1.1] Obtain the partition function Z(T') = (% /dwdp e_ﬁH> at temperature 7'. Here,

o0

B = 1/(kgT) is the inverse temperature. You may use the formula / e Pdt = /7.

—0oC

[1.2] Obtain the internal energy U.
[1.3] Obtain the heat capacity C.

Next, we consider M (3> 1) independent quantum harmonic oscillators in one dimension with
natural angular frequency w. The eigenenergy of one harmonic oscillator is given by

(e 1) :

S~

with a non-negative integer n.

1] Obtain the partition function Z(T') at temperature T'.

2] Obtain the internal energy U.

.3] Obtain the heat capacity C.

4] Express C’s temperature dependence in a simple form at low temperatures, and obtain

C’s asymptotic value at high temperatures. Also, draw the schematic of the heat capacity
C as a function of T.

We consider the specific heat from lattice vibrations of atoms in three dimensional solids.
We regard lattice vibrations as a collection of independent quantum harmonic oscillators
(vibrational modes), and assume that the number of vibrational modes whose natural angular
frequencies are between w and w + dw is given by g(w)dw with
9
—3w2 (w < wp)
glw) = { “D
0 (w > wD).

Here, wp is the Debye frequency and N(>> 1) is the number of atoms.

[3.1] Express the internal energy U and the heat capacity C as integrals with respect to w.



[3.2] Obtain C’s temperature dependence at low temperatures in the lowest order of T. In
4 .z 4
e 4 .
mdx = 1—5 AISO, obtain
C’s asymptotic value at high temperatures. In addition, draw the schematic of the heat

o0
doing so, you may evaluate the integral by using /
0

capacity C' as a function of 7.

[4] The number of vibrational modes is almost 3N for three dimensional solids with N(>> 1)
atoms. Let us compare (i) the heat capacity C1 of 3N one dimensional classical harmonic
oscillators with a single natural angular frequency w, (ii) the heat capacity Cry of 3N one
dimensional quantum harmonic oscillators with a single natural angular frequency w, and (iii)

the heat capacity Cir obtained in [3].

[4.1] Plot Cf, Cry, and Cyyp as functions of T in a single graph.

[4.2] Compare and discuss Cr, Cr1, and Chr’s behaviors at high temperatures. In particular,

explain the physical reason for their similarity.

[4.3] Compare and discuss C1,Ch, and Chy’s behaviors at low temperatures. In particular,

explain the physical reason for their difference.



Problem 4

We consider a quantum optical system of a single optical mode with a second-order nonlinear
optical effect. Let & be the Planck constant divided by 27, w(> 0) be the angular frequency of
the optical mode, a! and @ be the photon creation and annihilation operators, respectively. The
Hamiltonian of the system is given by

- KA
H = hwila + 7(&*&* + 4d), (1)

where A(> 0) is a parameter measuring the strength of the nonlinear optical effect. Note that '
is the Hermitian conjugate of @, and they satisfy the commutation relation

6,07 = aal —ala = 1. (2)
Denoting the imaginary unit as ¢, we can define the following two observables from the creation

and annihilation operators:

1
&= —(a!+a),

V2

A_LdT_&

[1] In absence of the nonlinear optical effect (A = 0), the ground state of the Hamiltonian

Hy = hwata (4)
is the zero-photon vacuum state |0), which satisfies a|0) = 0.

[1.1] Evaluate the commutator [Z,p] using Egs. (2) and (3).
[1.2] Using 4|0) = 0, calculate the variances 02,02 (o0 = 1/(0?) —(0)2, (...) = (0]...]0),

T P
0 = Z,p) of the observables 2,7 for the vacuum state |0). Also, evaluate 0,0, ie.,

the product of the standard deviations, and then verify the uncertainty relation 0,0y >
11/Ta A
s 1([&, p])I-

[2] Next, we consider the general case with a nonlinear optical effect (A > 0). To study the
ground state of the system, it is helpful to exploit the following unitary transformation:
Given a real parameter 7, the unitary operator S(r) = ¢5(80-8%8") transforms a, al as

S(r)'aS(r) = acoshr — alsinhr, S(r)fa’S(r) = a' coshr — asinhr. (5)

Defining H(r) = S(r)THS(r) and given that Eq. (5) is a linear transformation of &' and &,

H(r) takes the following form:

RA(r)

H(r) = hw(r)a'a + 5

(atal +aa) + E(r). (6)

[2.1] Using Eq. (5), find the expressions for w(r), A(r), E(r) in Eq. (6).
[2.2] With w > A assumed, the ground state of Eq. (1) turns out to be S(r)|0) for some
specific r. Express r in terms of w, A. Also, explain qualitatively why the ground state

has the form Y% ¢, (a7)??|0) with coefficients co,, which consists of terms with even
photon numbers.



[2.3] Assuming w > A, express the variances 03,012, of the observables Z,p for the ground
state of Eq. (1) in terms of w, A. Also, compare the results to those in Question [1.2]

for the vacuum state, and verify the uncertainty relation.

[3] Finally, we consider the time evolution starting from the vacuum state [0) in the general case
with a nonlinear optical effect. Suppose that the Hamiltonian is in a quadratic form of &, af,

as is the case of Eq. (1). The Heisenberg equation for &, &'

~ A

H,00)], O00)=0, O0=ala (7

d - 7
7=

turns out to be a linear differential equation

a faw] __., [a®
dt Lﬁ(t)} =M [&T(t)} ' (8)

where M is a 2 X 2 constant matrix.

[3.1] Find the matrix M corresponding to the Hamiltonian given in Eq. (1). If necessary, you
may use [AB,C] = [4,C]B + A[B, C] for operators A,B,C.

[3.2] Find the eigenvalues of M. Also, discuss the stability of the system in both of the
parameter regimes w < A and w > A.

[3.3] At the critical point w = A, calculate the expectation value of the photon number
A = a'a at time t. If necessary, you may use the fact that e = I + A for a matrix A
satisfying A% = 0. Here, I is the identity matrix.



