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Problem 1

We consider a quantum mechanical particle confined to an infinite-depth square-well potential in

one or two dimensions. Let m represent the mass of the particle, i the imaginary unit, a a positive

constant, and ℏ the Planck constant divided by 2π. We neglect the spin degree of freedom, and

wave functions are always normalized. You may use the following relations:∫ 1
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[1] First, we consider the one-dimensional case. The time-independent Schrödinger equation is

written as

Ĥψn(x) = Enψn(x),

where En (E1 < E2 < E3 · · · ) is the energy eigenvalue and ψn(x) is the corresponding

eigenfunction. It is noted that n is an integer greater than or equal to 1. The Hamiltonian

Ĥ is expressed as

Ĥ = − ℏ2

2m

d2

dx2
+ V (x),

V (x) =

{
0 (|x| ≤ a)

∞ (|x| > a).

[1.1] Find ψn(x) and En, where ψn(x) is a real function.

[1.2] Let P̂ be the operator which transforms the wave function ψ(x) to ψ(−x). Show that

ψn(x) is an eigenstate of P̂ and find the corresponding eigenvalue.

[2] Next, we consider the two-dimensional case. The Hamiltonian Ĥ is expressed as

Ĥ = − ℏ2

2m

(
∂2

∂x2
+

∂2

∂y2

)
+ V (x, y),

V (x, y) =

{
0 (|x| ≤ a and |y| ≤ a)

∞ (|x| > a or |y| > a).

For integers nx and ny greater than or equal to 1, a wave function written as Ψnx,ny(x, y) =

ψnx(x)ψny(y) is an energy eigenstate of this system, where ψn(x) are taken from Question [1].

The ground state is Ψ1,1(x, y), the first excited states are linear combinations of Ψ2,1(x, y)

and Ψ1,2(x, y), and the second excited state is Ψ2,2(x, y).

[2.1] Let M̂ be the operator which transforms the wave function Ψ(x, y) to Ψ(y, x). Show

that the ground state and the second excited state are eigenstates of M̂ and find the

corresponding eigenvalues.



[2.2] Among the first excited states, Ψ2,1(x, y) and Ψ1,2(x, y) are not eigenstates of M̂ , but

appropriate linear combinations of these states can be simultaneous eigenstates of Ĥ and

M̂ . Find all such simultaneous eigenstates and identify the corresponding eigenvalue of

M̂ for each of them. Here, express the simultaneous eigenstates by linear combinations

of Ψ2,1(x, y) and Ψ1,2(x, y), choosing the coefficient of Ψ2,1(x, y) to be a positive real

number.

[2.3] For each of the states found in Question [2.2], calculate the expectation value of the

angular momentum operator L̂ = −iℏ
(
x ∂
∂y − y ∂

∂x

)
.

[2.4] Let Ĉ4 be the operator which transforms the wave function Ψ(x, y) to Ψ(−y, x). Show

that the ground state and the second excited state are eigenstates of Ĉ4 and find the

corresponding eigenvalues.

[2.5] Among the first excited states, Ψ2,1(x, y) and Ψ1,2(x, y) are not eigenstates of Ĉ4, but

appropriate linear combinations of these states can be simultaneous eigenstates of Ĥ and

Ĉ4. Find all such simultaneous eigenstates and identify the corresponding eigenvalue of

Ĉ4 for each of them. Here, express the simultaneous eigenstates by linear combinations

of Ψ2,1(x, y) and Ψ1,2(x, y), choosing the coefficient of Ψ2,1(x, y) to be a positive real

number.

[2.6] For each of the states found in Question [2.5], calculate the expectation value of the

angular momentum operator L̂ = −iℏ
(
x ∂
∂y − y ∂

∂x

)
.



Problem 2

A parametric oscillation is an oscillatory phenomenon in the presence of a periodic modulation
of a system parameter. We consider the system shown in Fig. 1 as a simple example for the
parametric oscillation. A point mass m is suspended by a bar with length L and the supporting
point oscillates along the vertical direction with an amplitude a(≥ 0) and an angular frequency
Ω(> 0). The position of the mass at time t is (x, y) in the cartesian coordinate frame. We define
the origin of the coordinate frame as in Fig. 1. Note that the y-axis points downward in the
vertical direction. The position of the supporting point is (0, a cosΩt). Let the mass of the bar be
negligible, let its tension be T (> 0), and let it never deform. The angle θ is measured from the
vertical direction as in Fig. 1. The gravitational acceleration constant is denoted by g(> 0). We
neglect the friction at the supporting point and the air friction. In the following, the dot superscript
indicates the time derivative.

[1] Express the position (x, y) of the mass at time t using L, θ, a, Ω, and t.

[2] Express the equations of motion for (x, y) using ẍ, ÿ, m, T, θ, and g.

[3] By differentiating the results of Question [1], express ẍ and ÿ using L, θ, θ̇, θ̈, a, Ω, and t.

[4] Write down the equation of motion for θ. The tension T should not appear in the answer.

[5] Assuming that θ is small, we approximate sin θ as θ. We use this approximation in the follow-
ing questions. Determine the solution θ0(t) of the equation of motion derived in Question [4]
when a = 0, θ0(0) = A, and θ̇0(0) = 0. Also, determine the characteristic angular frequency
ω0(> 0) using g and L.

[6] We set the solution for small a to be θ(t) = θ0(t) + aθ1(t) using θ0(t) derived in Question
[5]. Assuming that the solution can be determined by perturbative expansion in a, find the
equation for θ1(t) in the first-order approximation.

[7] We want to obtain the solution θ1(t) of the equation derived in Question [6]. We assume
the following form of a special solution with time-independent constants u1 and u2 and the
characteristic angular frequency ω0, which was obtained in Question [5]:

θ1(t) = u1 cos[(Ω + ω0)t] + u2 cos[(Ω − ω0)t].

Express the condition for the existence of this special solution using Ω, g, and L. In addition,
determine u1 and u2 under this condition, and express them using only L,A, Ω, and g.



Figure 1



Problem 3

A container of a large heat capacity and a large mass has an internal cylindrical cavity, which holds

a gas of N(≫ 1) identical particles. Let L be the height of the cavity, R be its radius, and define

ν = N/L. We use a cartesian coordinate system xyz at rest with its origin O located at the center

of the cavity and its z axis aligned with the axis of rotational symmetry (Figure 1). The Boltzmann

constant and the Planck constant are denoted by k and h, respectively.

In the following, we refer to the z component of an angular momentum vector simply as angular

momentum. We refer to the pressure exerted on the internal side of the container as side pressure.

The natural logarithm of a positive number t is denoted by log t.

We represent the position of a particle by vector r = (x, y, z) and the corresponding momentum by

vector p = (px, py, pz). The Hamiltonian of one particle is given by H1(r,p) = (p2x+p
2
y+p

2
z)/(2m),

where m is its mass, and its angular momentum is given byM1(r,p) = xpy−ypx. The Hamiltonian

of N particles is given by the sum of one-particle Hamiltonians. Let ρ(r,p) denote the probability

density function for the distribution of one particle in phase space.

Treat the motion of the particles in classical mechanics and neglect the effect of gravity on the

particles. You may use the improper integral
∫∞
−∞ e−t2dt =

√
π.

[1] Consider the case where the container is at rest, fixed to the floor, and is regarded as a heat

bath of temperature T (Figure 2). The container and the gas are in thermal equilibrium. The

radius R is sufficiently large and the motion of the N particles follows a canonical distribution.

The probability density function ρ(r,p) of one particle is then given by

ρ(r,p) =
1

h3LZ̃1

exp

(
−H1(r,p)

kT

)
,

where Z̃1 is a quantity that depends neither on r nor on p. Answer the following questions.

[1.1] The quantity Z̃1 can be regarded as a function of temperature T and radius R. Using

the normalization condition of the probability density function ρ(r,p),∫ ∞

−∞
dpx

∫ ∞

−∞
dpy

∫ ∞

−∞
dpz

∫ L/2

−L/2
dz

∫
x2+y2≤R2

dxdy ρ(r,p) = 1,

calculate Z̃1(T,R) and express it in terms of kT,R, and γ = π5/2(2m)3/2h−3.

[1.2] Let F be the Helmholtz free energy of this gas and define F̃ = F/L. By considering

the partition function of N particles in the limit of N,L→ ∞ at fixed ν = N/L, derive

F̃ and express it in terms of kT, ν, and Z̃1(T,R). You may use the approximation

logN ! ≈ N logN −N .

[1.3] By considering the work required for a virtual infinitesimal change in radius R of the

cavity, calculate the side pressure P from the free energy F in Question [1.2] and express

it in terms of kT,R, ν, Z̃1(T,R), and the partial derivative
(
∂Z̃1(T,R)

∂R

)
T
. In addition,

express P in terms of kT,R, and ν by replacing Z̃1(T,R) with the answer to Question

[1.1].



[2] Consider the case where the container is suspended at the center of its top surface and is

allowed to rotate freely around the z axis without friction (Figure 3). Assume that the

container has rotational symmetry around the z axis. Suppose that the container is rotating

around the z axis at a constant angular velocity ω and that its temperature is T . The

container and the gas are in thermal equilibrium and the probability density function ρ(r,p)

of one particle is given by

ρ(r,p) =
1

h3LZ̃1

exp

(
−H1(r,p)− ωM1(r,p)

kT

)
,

where Z̃1 is a quantity that depends neither on r nor on p. Answer the following questions.

[2.1] Noting that the position r is confined to the cavity, derive the minimum value of

H1(r,p)− ωM1(r,p) in phase space and express it in terms of R,ω, and m.

[2.2] Let (vx(r), vy(r), vz(r)) be the expectation value of the velocity vector of a particle in

the vicinity of position r. Derive vx(r) and vy(r).

[2.3] The quantity Z̃1 can be regarded as a function of temperature T , radius R, and angular

velocity ω. Calculate Z̃1(T,R, ω) in this case and express it in terms of kT,R,m, ω, and

γ = π5/2(2m)3/2h−3.

[2.4] Express the side pressure P in terms of kT,R, ω, ν, and m. In addition, derive the value

of P in the limit of low temperature at fixed angular velocity ω.

[2.5] Calculate the moment of inertia I of the gas around the z axis and express it in terms

of kT, ω,N , and ε = mR2ω2/2.

[2.6] Calculate the heat capacity Cω of the gas at constant angular velocity ω and express it

in terms of k, T,N , and ε = mR2ω2/2. In addition, derive the values of heat capacity

Cω in the limits of high temperature and of low temperature.
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Problem 4

We consider a classical charged particle with mass m and charge q (> 0) in vacuum, whose position

coordinate at time t is given by r(t) = (x(t), y(t), z(t)). We study ways to confine it in a bounded

region around the origin (0, 0, 0) by using electromagnetic fields. Suppose that the velocity of the

charged particle is sufficiently small compared to the speed of light, and the effect of the electro-

magnetic field generated by the charged particle itself can be neglected. Use i as the imaginary

unit and answer the following questions.

[1] First, suppose that a static electric field is imposed so that the scalar potential at position

r = (x, y, z) is given by

ϕ(r) = ax2 + by2 + cz2. (1)

Here, a, b, and c are constants. The electric field is given by E(r) = −∇ϕ(r).

[1.1] The charged particle can be confined in a bounded region if a, b, and c of the scalar

potential in Eq. (1) are all positive. However, it is impossible to impose a static electric

field that makes all of a, b, and c positive since a + b + c = 0 holds in reality. Show

a+ b+ c = 0 in Eq. (1).

Below, let us consider a way to confine the charged particle in a bounded region by imposing

a uniform static magnetic field in addition to the scalar potential in Eq. (1). Suppose that

a = b = − c
2
< 0 in Eq. (1), and consider the situation where a static magnetic field with

magnetic flux density B = (0, 0, B) is imposed.

[1.2] Write down the equation of motion for the position r(t) of the charged particle in terms

of
dr(t)

dt
,
d2r(t)

dt2
, m, q, ϕ (r(t)), and B by considering the force acting on the charged

particle from the static electric field and the static magnetic field.

[1.3] The charged particle is confined along the z axis and undergoes harmonic oscillations.

Express its angular frequency in terms of m, q, and c.

[1.4] By defining u(t) = x(t) + iy(t), express the equation of motion for u(t) in terms of u(t),
du(t)

dt
,
d2u(t)

dt2
, m, q, c, and B.

[1.5] Find the condition for m, q, c, and B under which the charged particle is confined in a

bounded region along the x and y axes for any initial condition.

[2] Next, suppose that, instead of Eq. (1), the scalar potential at position r = (x, y, z) is given

by

ϕ̃(r, t) = (αx2 + βy2 + γz2) cosωt (2)

and varies with time at angular frequency ω. Here, α, β, and γ are constants. In this case,

under an appropriate condition, the charged particle can be confined in a bounded region

along all three axes x, y, and z. Below, let us explain this phenomenon by focusing on the

x component of the motion of the charged particle. Note that the magnetic field can be

neglected and the electric field is given by Ẽ(r, t) = −∇ϕ̃(r, t).



[2.1] The x component of the position of the charged particle can be expressed as a function

of τ by x(τ), where τ =
ωt

2
. In this case, the equation of motion for x(τ) can be written

as

d2x(τ)

dτ2
+ 2λx(τ) cos 2τ = 0, (3)

where λ is a constant. Find λ.

[2.2] Suppose that the solution of Eq. (3) is given by

x(τ) =

∞∑
n=−∞

Cn cos [(2n+Ω)τ ] (4)

for an appropriate initial condition. Here, Ω and Cn (n is an integer) are independent of

τ , and 0 < Ω < 1 holds. Express the relation between Ω, Cn−1, Cn, and Cn+1 in terms

of λ and n.

[2.3] When 0 < λ ≪ 1 in Question [2.2], the contribution of Cn in Eq. (4) can be neglected

except for C−1, C0, and C1. As an approximation, we use the relation in Question [2.2]

for n = −1, 0, 1 only. Under this condition and under the assumption C0 ̸= 0, we obtain
C−1

C0
=
C1

C0
= ελ and Ω = δλ up to first order in λ, where ε and δ are constants. Find ε

and δ.

[2.4] Express the solution x(τ) of Eq. (3) in terms of C0, λ, and τ , using the approximations

in Question [2.3]. When C0 > 0, draw a sketch of x(τ) as a function of τ .


