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1. Do not open this booklet before the start is announced. 

2. Inform the staff when you find misprints in the booklet. 

3. Answer the four problems in this booklet. 

4. Use one answer sheet for each problem (four answer sheets are given). You may 

use the back side of each answer sheet if necessary. 

5. Write down the number of the problem which you answer in the given space at the 

top of the corresponding answer sheet. 

6. You may use the draft sheets of this booklet to make notes, but you must not detach 

them. 

7. Any answer sheet with marks or symbols irrelevant to your answers will be 

considered invalid. 

8. Do not take this booklet and the answer sheets with you after the examination.  
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Problem 2

Let us consider a one-dimensional system in which mass points and springs are aligned in alternating

fashion. The natural length of each spring is a and the spring constant is k. Initially, the mass

points are placed at every position of the form x = na (n is an integer) and we index the mass

point at x = na as the n-th mass point. The displacement of the n-th mass point from x = na at

time t is denoted by xn(t). In the following, i is the imaginary unit. Answer the questions below.

[1] First, suppose that the mass of each mass point is m (Fig. 1). The numbers of mass points

and springs are sufficiently large so that edge effects can be neglected.

[1.1] Write down the equation of motion for the n-th mass point.

[1.2] Assume the form xn(t) = eiqncq(t) (0 ≤ q < 2π). Substitute this expression into the

equation of motion in [1.1], and derive the differential equation for cq(t). Note that the

actual displacement of the n-th mass point is given by the real part of xn(t).

[1.3] When 0 < q < 2π, the general solution to the differential equation in [1.2] is given as a

linear combination of e+iωqt and e−iωqt. Express ωq in terms of m, k, and q, provided

ωq > 0.

[1.4] When q = 0, find the general solution to the differential equation in [1.2].

[2] Now, suppose that the mass of the 0-th mass point in the system of [1] is modified to M

(Fig. 2). The masses of all other mass points and the spring constants are unchanged. Con-

sider a situation where the oscillation of the mass points xn(t) = eiqn−iωqt (0 < q < π) is

incident from x < 0. To find the transmission amplitude Tq and the reflection amplitude Rq,

we assume the form

xn(t) =

eiqn−iωqt +Rqe
−iqn−iωqt (n ≤ −1)

Tqe
iqn−iωqt (n ≥ 0)

(1)

as a solution to the equations of motion. Note that, in general, Tq and Rq are complex

numbers.

[2.1] Write down the equation of motion for each mass point. Pay attention to the treatment

of the 0-th mass point.

[2.2] Substitute the assumed form (1) into the equations of motion for n ≤ −2 or n ≥ +1, and

show that the expression for ωq is unchanged from the one derived in [1.3] even when

M ̸= m.

[2.3] Based on the result of [2.2], substitute the assumed form (1) into the equations of motion

for n = 0 and n = −1, and derive simultaneous equations for Tq and Rq.

[2.4] Using the simultaneous equations in [2.3], show that Rq = Tq − 1. Furthermore, express

the transmission amplitude Tq in terms of M , m, and q.

[2.5] Set M = m and M = +∞ in the solution in [2.4] and interpret the results.

[3] Next, let us impose periodic boundary conditions on the system considered in [2] (Fig. 3).

The total numbers of mass points and springs are both L, which is assumed to be an even

integer. The mass point at n = L/2 is connected to the mass point at n = −(L/2) + 1 by a



spring. To find the normal modes of this system, we consider incident oscillations from x < 0

and x > 0 simultaneously. We assume the form

xn(t) =

Aqe
iqn−iωqt +Bqe

−iqn−iωqt (n ≤ −1)

Cqe
iqn−iωqt +Dqe

−iqn−iωqt (n ≥ 0)
(2)

with 0 < q < π. Because the equations of motion are linear and have inversion symmetry

about x = 0, the results of [2] can be expressed as(
Cq

Bq

)
= Sq

(
Aq

Dq

)
, Sq =

(
Tq Rq

Rq Tq

)
. (3)

[3.1] The periodic boundary condition implies Aq = Cqe
iqL and Bq = Dqe

−iqL. Requiring

that these conditions and Eq. (3) are satisfied simultaneously, derive the equation that

determines the allowed values of q in this system.

[3.2] When M = m, express the allowed values of q in terms of L. Also, find the corresponding

normal frequency ωq.

[3.3] When M = 2m, express the allowed values of q in terms of L. Also, find the corre-

sponding normal frequency ωq. Recalling the condition 0 < q < π, count the number of

normal modes which can be given in the form of Eq. (2). If their number is less than L,

describe the remaining mode(s).

[3.4] Discuss the case M → ∞ in the same way as in [3.3].

Figure 1

Figure 2

Figure 3



Problem 3

Let us consider a binary alloy that consists of two types of atoms, A and B. Let the lattice have

N sites, where each site is occupied by either an A atom or a B atom (see Fig. a). The number

of A atoms is NA, the number of B atoms is NB, and N = NA + NB. We assume that NA ≫ 1

and NB ≫ 1. When the number of nearest neighbor pairs that are occupied by different kinds of

atoms is NAB, the internal energy E is given by

E = NABV, (1)

with V > 0. The number of nearest neighbors (the coordination number) z is the same for each

site.

First, let us consider a uniform alloy (as shown in Fig. b). We define the parameter x that

determines the composition ratio of the alloy by writing NA = xN , and NB = (1 − x)N with

0 < x < 1. The Boltzmann constant is kB. Answer the following questions.

[1] A site occupied by an A atom has z nearest neighbor sites. We approximate that B atoms

occupy those nearest neighbor sites with the probability NB/N . With this approximation,

express NAB in terms of z,N , and x. In addition, express the internal energy E in terms of

z,N, x, and V .

[2] Suppose that the entropy S of the alloy is determined exclusively by the configuration of the

atoms. Express S in terms of kB, N , and x. In doing so, use Stirling’s formula, logN ! ≃
N logN −N for N ≫ 1.

[3] Find the Helmholtz free energy F at a temperature T .

Next, let us consider alloys with various composition ratios. To this end, we treat x as a variable.

We define the average free energy per site, f(x) = F/N , for a uniform alloy (Fig. b) for given x. If

we fix the temperature T , f(x) can be regarded as a function of the composition parameter x. Let

us consider the behavior of the function f(x).

At the extrema of the function f(x), x satisfies the equation

zV

kBT
(2x− 1) = g(x), (2)

with a function g(x). In addition to the solution x = 1
2 , this equation has other solutions when

T < Tc0. Such solutions can be written as x = 1
2 ± δ0 with δ0 > 0. Also, f(x) has inflection points

(solutions to f ′′(x) = 0) which can be written as x = 1
2 ± δ1 with δ1 > 0.

[4] Find g(x).

[5] At T = Tc0, the slopes on both sides of Eq. (2) coincide at x = 1
2 . Find Tc0.

[6] Draw y = g(x) and y = zV
kBT (2x− 1) in a single graph for the cases of T > Tc0 and T < Tc0.

[7] Find δ1.

[8] Draw f(x) as a function of x in the case T < Tc0. In doing so, indicate the positions x = 1
2±δ0

and x = 1
2 ± δ1.



[9] δ0 and δ1 can be regarded as functions of the temperature T . Draw the curves x = 1
2 ± δ0(T )

and the curves x = 1
2 ± δ1(T ) in a single graph based on [7] and [8], with x and T being the

horizontal and vertical axes, respectively.

Next, we investigate the phenomenon of phase separation in alloys. To this end, we study the

stability of uniform alloys. Suppose that a uniform alloy M0 with x = x0 (Fig. b) separates into a

uniform alloy M1 with x = x1 and a uniform alloy M2 with x = x2 according to the ratio s : (1−s)

(Fig. c). Here we assume x1 < x2, which leads to x1 < x0 < x2. We write the average free energy

per site of the phase separated alloy as f∗. The uniform alloy with x = x0 is energetically stable if

f(x0) < f∗ (3)

holds.

[10] The number of A atoms in M0 is the same as the sum of those in M1 and M2. Express s in

terms of x0, x1, and x2.

[11] Express f∗ in terms of x0, x1, x2, and the function f(x).

[12] A uniform alloy is stable against infinitesimal fluctuations of x, if Eq. (3) is satisfied for

x1 = x0 − δ and x2 = x0 + δ with an infinitesimal δ. Prove that a uniform alloy with x = x0

is stable against infinitesimal fluctuations of x if ∂2f
∂x2

∣∣∣
x=x0

> 0.

[13] In the parameter space spanned by T and x, there appear three regions where (I) the uniform

alloy is the most stable, (II) the uniform alloy is not the most stable but is stable against

infinitesimal fluctuations of x (i.e., quasi-stable), and (III) the uniform alloy is unstable

against infinitesimal fluctuations of x and undergoes phase separation. Show the regions I,

II, and III in the graph obtained in [9].

Figure：Schematics of a binary alloy. (a) Configuration of A and B atoms for a square lattice.

Schematic pictures of (b) a uniform alloy and (c) its phase separation.



Problem 4

　 Answer the following questions regarding responses of a dielectric material exposed to an elec-
tromagnetic wave. The permittivity of vacuum and the imaginary unit are denoted by ϵ0 and i,
respectively.

[1] First, we consider the interaction of an atom with the electromagnetic wave. Suppose that
the atom consists of an electron with mass m and electric charge −q (m, q > 0) which is
bound to a spatially fixed nucleus. The atom is exposed to the spatially uniform electric field
E(t) = E0 exp(−iωt) with angular frequency ω (ω > 0). The vector x(t) is the displacement
of the electron from its equilibrium position. There are three forces acting on the electron:
the force from the electric field E(t), a restoring force −mω2

0x(t), and a velocity dependent

damping force −mγ
dx(t)

dt
(ω0, γ > 0). We use complex representations for the electron

displacement and the electric field, where the real parts correspond to the physical quantities.

[1.1] Write down the equation of motion for the displacement x(t) of the electron.

[1.2] Assume the form x(t) = x0 exp(−iωt) as a solution of [1.1]. Find x0.

[1.3] Now, we consider a dielectric that consists of N atoms per unit volume, where each
atom is described by the model above. The electric polarization density P (t) induced
in the dielectric is expressed as P (t) = −Nqx(t). Define the complex susceptibility χ
by P0 = ϵ0χE0, where P0 is given by P (t) = P0 exp(−iωt). We write χ = χR + iχI ,
where χR and χI are real. Derive expressions for χR and χI .

[1.4] Draw the graph of χR as a function of ω, assuming γ ≪ ω0. It is not necessary to
calculate the extremal values of χR.

[2] As in Fig.1, we suppose that the region z ≤ 0 is filled with the dielectric described in [1],
and the region z > 0 is vacuum. We consider the response of the dielectric to an incident
electromagnetic wave with an angular frequency ω, which is higher than the angular frequency
ω0. We approximate χ as a constant satisfying −1 < χR < 0 and χI = 0, and we write
the electric polarization density P (r, t) = ϵ0χE(r, t) (χ = 0 in vacuum) in terms of the
electric field E(r, t) at the position r. The permeability of the dielectric is equal to µ0, the
permeability of vacuum. Neither true charges nor true currents exist at the interface and in
the dielectric.

In the following, we consider a plane electromagnetic wave with the incident angle θ0 (0 <
θ0 <

π
2 ) entering from the vacuum to the dielectric. Figure 1 shows the situation where there

exists a transmitted wave in the dielectric. Suppose that the electric fields of the incident
wave E0(r, t) and the reflected wave Em(r, t) in vacuum, and the electric field in the dielectric
Et(r, t) are expressed as

E0(r, t) = E0ey exp{i(K0 · r − ωt)},

Em(r, t) = Emey exp{i(Km · r − ωt)},

Et(r, t) = Etey exp{i(Kt · r − ωt)},

where the wave vectors K0,Km, and Kt are

K0 = (k sin θ0, 0,−k cos θ0), Km = (Kmx, 0,Kmz), Kt = (Ktx, 0,Ktz).

The vector ey is a unit vector along the positive y-direction. Also, k is a positive real number,
while E0, Em, and Et are complex numbers in general.



Maxwell’s equations in this system are written as

∇ · (ϵ0E(r, t) + P (r, t)) = 0, (1)

∇×E(r, t) = − ∂

∂t
B(r, t), (2)

1

µ0
∇×B(r, t) =

∂

∂t
(ϵ0E(r, t) + P (r, t)), (3)

∇ ·B(r, t) = 0, (4)

with the magnetic flux density B(r, t).

Figure 1

[2.1] Express the continuity condition for the y component of the electric field at z = 0 as a
relation of E0 exp (iK0 · r), Em exp (iKm · r), and Et exp (iKt · r). You may derive this
condition by using surface integration of Eq. (2) on a rectangle of infinitesimal size with
the corners (x, y ±∆y,±∆z), where 0 < ∆z ≪ ∆y.

[2.2] Express Kmx and Ktx in terms of k and θ0 from the condition obtained in [2.1].

[2.3] Write down the wave equations of E0 (r, t) and Em (r, t) in vacuum, and of Et (r, t) in
the dielectric. From the wave equations, express k2,K2

mx+K2
mz, and K2

tx+K2
tz in terms

of ϵ0, µ0, ω, and χ. You may use the formula from vector analysis, ∇× (∇×C (r, t)) =
∇ (∇ ·C (r, t))−∇2C (r, t).

[2.4] Express Kmz in terms of k and θ0 using the results of [2.2] and [2.3].

[2.5] When the incident angle is larger than some angle θc, Ktz becomes purely imaginary,
and the electric field Et (r, t) in the dielectric decays along the z-negative direction. In
this case, all of the energy of the incident wave is reflected. This phenomenon is called
total reflection. Find θc using the results of [2.2] and [2.3]. Express Ktz in terms of k, θ0,
and χ in the two cases θ0 > θc and θ0 < θc.

[2.6] Suppose that the incident angle θ0 is larger than θc of [2.5]. Moreover, we define z0 as
the absolute value of z where the amplitude of the electric field in the dielectric becomes
1/e (e is the base of the natural logarithm) of its value at z = 0. Express z0 in terms of
k, θ0, and χ. Draw the graph of z0 as a function of cos2 θ0.


