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Problem 1

Consider a one-dimensional classical system of N particles of mass m that are interconnected with

springs as shown in Figure 1. We label the particles with n = 1, 2, . . . , N − 1, N . The springs at

the two ends are attached to the immovable walls. All the springs have the same spring constant k

and are initially at their natural length as depicted in Figure 1. We denote by xn(t) the change in

position of n-th particle at time t, as measured from the position in Figure 1. Neglecting friction

with the floor, answer the following questions.

Figure 1

[1] Let us define x(t) as an N -dimensional column vector whose n-th component is given by

xn(t).

[1.1] The equation of motion can accordingly be written as

m
d2

dt2
x(t) = −Kx(t). (1)

Find the N -dimensional square matrix K.

[1.2] Normalized eigenvectors uℓ (ℓ = 1, 2, . . . , N − 1, N) of the matrix K are given by

(uℓ)n = Nℓ sin(qℓn), (2)

where qℓ =
πℓ

N + 1
and (uℓ)n is the n-th component of the N -dimensional column vector

uℓ (n = 1, 2, . . . , N − 1, N). Obtain the eigenvalue of K associated with the eigenvector

uℓ. Also, find the normalization factor Nℓ. You may use the formula

N+1∑
n=1

cos

(
2πℓn

N + 1

)
= 0 (3)

that holds for ℓ = 1, 2, . . . , N − 1, N .

[1.3] We expand x(t) in terms of the eigenvectors uℓ as x(t) =

N∑
ℓ=1

αℓ(t)uℓ. Show that the

equation of motion for x(t) in Equation (1) leads to the following differential equation

for αℓ(t),
d2

dt2
αℓ(t) = −ω2

ℓαℓ(t). (4)

Given that ωℓ > 0, express the angular frequency ωℓ in terms of k, m, and qℓ.

[1.4] Draw a graph for the angular frequency ωℓ obtained in Question [1.3] as a function of

qℓ.



[2] For the setup in Figure 1, an external force is applied to each particle individually. Let fn be

the force acting on the n-th particle and xn be its corresponding displacement from the initial

equilibrium position to the new one. With these, we construct the N -dimensional vectors f

and x, whose n-th components are fn and xn, respectively. We then expand these vectors as

x =
N∑
ℓ=1

αℓuℓ and f =
N∑
ℓ=1

βℓuℓ with uℓ defined in Question [1.2].

[2.1] Express the ratio αℓ/βℓ in terms of m and ωℓ obtained in Question [1.3].

[2.2] Find ℓ that maximizes the ratio αℓ/βℓ. How does the maximum value of αℓ/βℓ behave

as a function of N when N ≫ 1?

[3] As schematically shown in Figure 2, an additional potential 1
2k0xn(t)

2 is applied to each

particle in the initial setup in Figure 1. Here, k0 (> 0) is a constant characterizing the

strength of the potential.

[3.1] How does the matrix K in Equation (1) change in this situation? Explain how this

additional potential affects the eigenvalues and eigenvectors of K.

[3.2] Describe the corresponding angular frequency ωℓ in terms of k, k0, m, and qℓ given in

Question [1.2]. Also, find the minimum value of the angular frequencies ωℓ in the limit

N → ∞.

[3.3] Draw a graph for the angular frequency ωℓ obtained in Question [3.2] as a function of

qℓ.

Figure 2



Problem 2

Consider a plane electromagnetic wave with the angular frequency ω and the wave vector k propa-

gating in an optically anisotropic medium. k is a column vector k = (kx, ky, kz)
T, where T denotes

transposition. When the electromagnetic wave is not absorbed or scattered in the medium, the

electric field E and the magnetic field H of the plane wave in the medium can be expressed in the

following complex notation,

E(r, t) = E0 exp{i(k · r − ωt)}, H(r, t) = H0 exp{i(k · r − ωt)}. (1)

Here, E0 and H0 are constant complex column vectors independent of position r = (x, y, z)T and

time t. In this medium, Maxwell’s equations

∇×E = −∂B

∂t
, ∇×H =

∂D

∂t
(2)

are satisfied. Here, B andD are the magnetic flux density and the electric flux density, respectively.

The magnetic permeability of the medium is assumed to be equal to the vacuum permeability µ0,

and the relation B = µ0H holds in the medium. This medium is a uniaxial crystal whose electric

permittivity in the z direction is different from that in the other directions; D and E satisfy the

relation D = ε̃E with a matrix

ε̃ =

ε1 0 0

0 ε1 0

0 0 ε2

 . (3)

Here, permittivities ε1 and ε2 satisfy ε1 > ε2 > 0.

[1] Given that the plane wave in Equations (1) satisfies Maxwell’s equations (2), derive the

following relation,

k × (k ×E0) + ω2µ0ε̃E0 = 0. (4)

[2] Equation (4) can be transformed into the form X̃E0 = 0 with a matrix X̃. Derive an

expression for X̃. You may use the formula A × (B × C) = (A · C)B − (A · B)C for the

three-dimensional vectors A, B, and C.

[3] Assume that the wave vector of the plane wave is given by k = (0, k sin θ, k cos θ)T with

0 < θ < π/2 and k > 0. Show that Equation (4) has a solution for E0 other than a zero

vector only when k is equal to one of the two values given by

k1 = ω
√
µ0ε1, (5)

k2 = ω

√
µ0ε1ε2

ε1 sin
2 θ + ε2 cos2 θ

. (6)

[4] Find solutions for E0 corresponding to k1 and k2 in Question [3]. Here, we set |E0| = E0.



Suppose that this uniaxial crystal is cut into a rectangular parallelepiped, as shown in Figure 1.

The z axis of the crystal is inclined at an angle θ with respect to the normal direction of the side

surface A of the crystal, and the surface A is perpendicular to the yz plane. Consider the case

where a light beam with the angular frequency ω is normally incident on the surface A from the

air. Since the wave vector of the light beam remains normal to the surface A after entering into the

crystal, Figure 1 represents the situation considered in Question [3]. In this case, the light beam

in the crystal is split into two beams propagating in different directions, one beam with only the x

component of the electric field and the other beam with only the y and z components of the electric

field. Here, we neglect reflection at the surfaces of the crystal and light dispersion in the crystal.

[5] In Figure 1, consider the light beam with only the x component of the electric field in the

crystal. Which solution in Question [3], k = k1 or k = k2, corresponds to this beam? Also,

show that this beam keeps propagating straight without changing the direction after entering

into the crystal. Note that the propagation direction of a light beam is given by the Poynting

vector S = E ×H and does not always coincide with the direction of the wave vector.

[6] In Figure 1, consider the light beam with only the y and z components of the electric field in

the crystal. The propagation direction of this beam is tilted at an angle α after entering into

the crystal. Express tan(θ + α) in terms of ε1, ε2, and θ. Then, express tanα in terms of ε1,

ε2, and θ.

[7] Consider a sheet of paper on which a character “Q” is printed as shown in Figure 2. The

crystal in Figure 1 is placed in such a way that its surface A comes into contact with the

surface of the paper. Suppose that we view the character printed on the paper from the

opposite side of the surface A of the crystal. Illustrate what it looks like. Also, explain the

reason using a diagram.

axis
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Problem 3

As a simple model for adsorption of atoms on a solid surface, consider a system where a monatomic

ideal gas is in contact with an adsorbent lattice, consisting of an array of Na adsorption sites (see

Figure 1). The system obeys the Boltzmann statistics. The adsorption sites are independent of

each other, and each adsorption site can take either two states with adsorbed atoms (adatoms):

zero adatom with the energy 0 and one adatom with the energy −ε (ε > 0). The mass of each atom

is denoted by m. Internal degrees of freedom of the atoms are neglected. The entire system is in

a thermal equilibrium state at temperature T and chemical potential µ. Let kB be the Boltzmann

constant, β = 1/(kBT ) the inverse temperature, and ℏ the Planck constant divided by 2π.

[1] First, consider only the monatomic ideal gas. Show that the partition function of the ideal

gas, consisting of N monatoms in a volume V , is given by

Z(g)(V, β,N) =
V N

N !

(
m

2πℏ2β

)3N/2

. (1)

[2] Find the grand partition function Z
(g)
G (V, β, µ) =

∞∑
N=0

Z(g)(V, β,N)eβµN by using Equation (1).

[3] Pressure P of the ideal gas is given by Z
(g)
G as P (β, µ) =

1

β

∂

∂V
logZ

(g)
G (V, β, µ). Find P (β, µ)

by applying the result in Question [2] to this relation.

[4] Next, consider the situation where the adsorbent lattice is in contact with this monatomic

ideal gas. Find the grand partition function ξ
(a)
G for the states at a single adsorption site.

[5] The grand partition function of the entire adsorbent lattice is given by Z
(a)
G = (ξ

(a)
G )Na . Using

this, find the adatom density na (the total number of adsorbed atoms divided by Na).

[6] Using the results obtained in Questions [3] and [5], express the adatom density na as a function

of pressure P and temperature T .

[7] Plot na obtained in Question [6] as a function of pressure P at a constant temperature T .

Also, plot na as a function of temperature T at a constant pressure P .



Monatomic ideal gas

Adsorbent lattice
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Figure 1



Problem 4

Consider a quantum-mechanical particle of mass m moving in two dimensions under the potential

(1/2)mω2(x̂2 + ŷ2). Here, ω is a positive constant characterizing the potential strength, and x̂ (ŷ)

is the position operator along the x (y) axis. First, consider the motion in the x and y directions

separately. Let |n⟩ be the eigenstate of a particle of mass m moving along the x axis under the

potential (1/2)mω2x̂2, where the integer n (= 0, 1, 2, . . .) labels the states in the increasing order

of energy. Let us introduce operators,

â†x =

√
mω

2ℏ

(
x̂− i

mω
p̂x

)
, âx =

√
mω

2ℏ

(
x̂+

i

mω
p̂x

)
, (1)

with p̂x being the x component of the momentum operator, and ℏ denoting the Planck constant

divided by 2π. Accordingly, â†x, âx, and |n⟩ satisfy the following relations:

[âx, â
†
x] = âxâ

†
x − â†xâx = 1, (2)

â†x|n⟩ =
√
n+ 1|n+ 1⟩, âx|n⟩ =

√
n|n− 1⟩ (n ̸= 0), âx|0⟩ = 0. (3)

Similarly, we introduce the operators for motion in the y direction as follows,

â†y =

√
mω

2ℏ

(
ŷ − i

mω
p̂y

)
, ây =

√
mω

2ℏ

(
ŷ +

i

mω
p̂y

)
. (4)

Ignoring the spin of the particle (except in Question [9]), answer the following questions.

[1] Describe the overall Hamiltonian Ĥ of the system using â†x, âx, â
†
y, and ây.

[2] Find the energy eigenvalues of Ĥ. Find the degree of degeneracy in the N -th energy level

(N = 1, 2, 3, . . .) from the lowest one.

[3] Express the z component of the angular momentum l̂z = x̂p̂y − ŷp̂x in terms of â†x, âx, â
†
y, and

ây. Also show that the angular momentum l̂z is conserved.

Next, let us construct simultaneous eigenstates of the Hamiltonian Ĥ and the angular momentum

l̂z. For this purpose, we introduce operators b̂
† = Câ†x+Dâ†y and b̂ = C∗âx+D∗ây. Here, C and D

are complex coefficients which satisfy |C|2+ |D|2 = 1, and C∗ and D∗ are their complex conjugates.

[4] Suppose that an operator Â and a real number α satisfy

[l̂z, Â] = αÂ. (5)

Let |lz⟩ be an eigenstate of l̂z with the eigenvalue lz. Show that Â|lz⟩ is also an eigenstate of

l̂z with the eigenvalue lz + α when Â|lz⟩ ̸= 0.

[5] Find coefficients C and D, and the corresponding α so that the operator b̂† satisfies the

condition for Â in Equation (5). Choose C as a non-negative real number. Note that there

exist two choices for b̂† and b̂. We denote them by b̂†1 and b̂1, b̂
†
2 and b̂2 below.

[6] Calculate the commutation relations [b̂1, b̂
†
1], [b̂2, b̂

†
2], [b̂1, b̂

†
2], and [b̂2, b̂

†
1].

[7] Express the Hamiltonian Ĥ and the angular momentum l̂z in terms of b̂†1, b̂1, b̂
†
2, and b̂2.



[8] Find all the eigenvalues of l̂z for the eigenstates belonging to the N -th energy level (N =

1, 2, 3, . . .).

[9] Suppose that the particle considered so far is an electron with spin 1/2. Let us introduce the

spin-orbit interaction Ĥso = λl̂zσz. Here, λ is the magnitude of the spin-orbit interaction,

and σz = ±1 corresponds to the z component of spin. Find the energy levels of the system

in this case.


