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Problem 1 ,
As shown in Figure 1, a rotating rigid sphere with an angular velocity w(> 0) is vertically directed
onto a flat horizontal floor and bounces, which results in a lateral velocity v’ (< 0) and an angular
velocity w’. The rotation axis is parallel to the floor. The sphere has a mass m, a radius a, and is
homogeneous in density. The positive directions of the z axis and of the rotation of the sphere are
indicated by the arrows in Figure 1. For these conditions, answer the following questions.
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Figure 1

[1] Show that the moment of inertia I of this sphere about its central axis is given by I = Zma®.

[2] Show the relation between v' and w’ under the condition that the sphere does not slip with
respect to the floor on impact. This condition means that the lateral velocity of the sphere’s
contact point with the floor right after the impact is zero with respect to the floor.

[3] As shown in Figure 1, an impulse P(< 0) acts laterally on the sphere at the impact due to
friction. Write the relation between the momentum before and that after the impact using
P. Write the relation for the angular momentum as well. Under the condition of [2], express
the angular velocity w’ after the impact in terms of w. '

Next, consider that the same rigid sphere bounces repeatedly on the floor with friction as shown in
Figure 2. The sphere has an initial lateral velocity 0 (> 0) and angular velocity wy (> 0). After
the first impact on the floor, the lateral velocity and the angular velocity of the sphere become
v1 and wi, respectively, due to the impulse P; (< 0) acting laterally upon impact. Assume that
the coefficient of restitution is less than unity. As time passes, the sphere ceases to bounce and
rolls with a constant velocity vf without slipping. The positive directions of the x axis and of the
rotation of the sphere are indicated by the arrows in Figure 2. The axis of the rotation is parallel
to the floor and perpendicular to the z direction. ’ .

[4] At the n-th bounce, the sphere impacts on the floor with the lateral velocity v,_1 and the
angular velocity wp_1, resulting in the lateral velocity v, and angular velocity w, due to the
vimpulse P, of friction. Write the relation between the momentum before and that after the
impact using Pn‘. Write the relation for the angular momentum as well. Also show that the
following quantity ‘

1= Twy, — amoy,

is constant, independent of n.
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~ [5] Express the velocity vr right after the bouncing ceases in terms of m, a, and [.” Also write the
relation between the velocity vy and angular velocity wg for the case of vf = 0 without rolling
~when the bouncing ceases. ‘ ’



| Problem 2

Consider the electrostatic potential due to infinitely long line Charges with uniform charge densities

placed in vacuum of permittivity eg.

1] Calculate the electric field strength F(r) at a point (x,y) = (r cos @, rsin §) when a line charge

2]

with a linear charge density A is placed on the z axis, as shown in Figure 1, and verify that
the electrostatic potential ¢(r,8) of this line charge is given by -

b(r) = - " BV

- 2meg 1o’

where the electrostatic potential is set to be zero at r = ry.

Calculate the electrostatic potential ¢(r,8) at a point (z,y) = (rcosé,rsind) when a line
charge with a linear charge density A is placed at (z,y) = (a,0) and another line charge with
a linear charge density —X is placed at (b,0) with 0 < a < b as shown in Figure 2. The line
charges are parallel to the z axis.

Figure 1 ' , Figure2 o N
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Consider a conductor with an infinitely long cylindrical hollow of radius R centered on the z axis

and

an infinitely long line charge with a linear charge density A placed parallel to the z axis within

the hollow as shown in Figure 3. The conductor is connected to earth ground and is infinitely large.

The
field

line charge induces opposite charges on the inner surface of the conductor due to the electric
of the line charge. Consider the method of mirror images to calculate the distribution of the

induced surface charges. Since the electrostatic potential is constant (independent of position) in

the conductor, the image charge is placed such that the total electrostatic potential due to the line

charge and the image charge becomes constant at the inner surface of the conductor. Consider a

system of two line charges shown in Figure 4, where a line charge with a linear charge density A

is pl

(z,y

3]

)

aced at (z,y) = (d,0) and an image line charge with a linear charge density —X is placed at
)= (D,0) with 0 <d < R < D.

Calculate the electrostatic potential at a point (z,y) = (rcos@,rsinf) assuming first that

no conductor is present and verify that the condition for the electrostatic potential being

constant at r = R is given by D = R?/d. By using this condition, express the electrostatic
- potential ¢(r,6) within the cylindrical hollow (r < R) without using D.

- The induced surface charge density ¢ on the inner surface of the conductor can be calculated

by
0 1s)
o=-a2 e (6—¢)=R @)



where 0¢/0n is the partial derivative of the electrostatic potential with respect to the normal
direction to the inner surface of the conductor. Calculate the induced surface charge density
- 0(0) at a point (z,y) = (Rcos6, Rsinb).
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[5] Using the result of [4], verify that the amount of induced charges on the inner surface of the
conductor per unit length along the z axis coincides with —\ by integrating o () around a
circle on the inner surface of the conductor. If necessary you may use the following formula:

1—a?

© :
=1+ 2Za"cosn:c, when |a| <'1. (3)

1—2acosz + a2
n=1

The position of the line charge can be estimated by measuring the inner surface charge density.
Consider a system of a line charge at (zo, yo) = (dcos®, dsiny) with d < R and four detectors
to measure the inner surface charge den’sity at 6 = 0, n/2, m, and 37/2 on the éonductor, as
shown in Figure 5. The size of the detector can be ignored and the detectors will not influence the
electrostatic potential.

[6] Express the position of the line charge (zo, yo) using R and the inner surface charge density

01, 02, 03, and o4 measured at 6 = 0, ©/2, =, and 37 /2, respectively. The distance between
the line charge and the z axis is small enough to neglect any higher order terms than d/R
when you use equation (3). ‘

Figure 5
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" Problem 1

)

Consider the one-dimensional potential U (z) with two mimima shown in Figure 1.
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Figure 1: The potential U(z) and its eigenstates Ys(z) and Y4(z).

Consider a system where one particle is confined in the potential U(z). Normalized eigenstates of
Ys(x) and Y4 (x) are obtained as the two lowest energy solutions of the Schrodinger equation. The
energies of these two eigenstates are £J (J > 0). Assume that the transition of the particle to
states other than ¥5(x) and 1 4(x) is negligible and that dissipation can be neglected. The Planck
constant divided by 27 is denoted by A. Answer the following questions. '

[1] Which of the two eigenstates (¥g(x) or ¥ 4(z)) corresponds to lower energy (= —J)? Explain
the reason. -

bNext, Yr.(x) and Yg(z) are defined as follows: ¥ (z) = %(1#5(50) +va(x)), Yr(z) = —\}—5(1,115(1) -
Ya(z)). - '

[2] Show that v (z) and ¥gr(z) are mutually orthogonal. Write down the Hamiltonian of the
system as a 2 X 2 matrix using ¥ (z) and ¥g(z) as the basis.

From here, we expfess Y1 (z) as “the state where the particle exists in the left well”, and ¥ g(z) as
“the state where the particle exists in the right well.”

[3] At the time ¢ - 0, the particle exists in the left well. Find the time-dependent probability
that the particle exists in the right well. .

In the following, consider the system where two indistinguishable particles are confined in the
potential U(z). Assume that the particles obey Bose statistics and have no internal degrees of

freedom. Consider the following states labeled as |0), |1), and |2):

e The state in which both particles exist in the left well is denoted as |0).



e The state in which one particle exists in the left well and the other one in the right well is

denoted as [1).

o The state in which both particles exist in the right well is denoted as |2).

The wave function of the(syystem can be expressed as |¥(t)) = co(t)|0) + c1(t)[1) + ca(t)|2). Answer
the following questions. ‘

[4]

3l

Assume that there are no interactions between the particles.

[4.1] Show that the Hamiltonian M of this system can be expressed as follows:

0 —v2J 0 ‘
H=| —v2J 0 - —V2J |. (1)
0 —V2J 0

[4.2] Find all eigen energies of this system.

[4.3] At the time ¢ = 0, both particles exist in the left well. Find the probability Py (t) (n
0,1,2) as a function of t and J that n particles exist in the right well. Show P,(t) (n =
0,1,2) on a graph. : ‘ :

Il

Assume that there is strong attractive interaction between the particles so that the energy of
the system decreases by A (A > J > 0) when both particles exist in the same well.

- [5.1] Find the Hamiltonian of this system by modifying the diagonal elements of H in equation

[7]

(1). v :
[5.2] Find all eigen energies of this system. Expand them to the order of J2 /A, using A> J. .
[6.3] At the time ¢t = 0, both particles exist in the left well. From Figures 2(a)-(e), choose the

graph that shows the probability P, (t) (n = 0,1, 2) that n particles exist in the right well
at a time ¢. Indicate which of the lines (solid, dotted, or dashed-dotted) corresponds to

n =0, 1, and 2 in the figure you have chosen. For this chosen figure, derive an expression

for the period T.

Assume that there is strong repulsive interaction between the particles so that the ‘energy

of the system increases by B (B > J > 0) when both particles exist in the same well.
From Figures 2(a)-(e), choose the graph that shows the probability P,(t) (n = 0,1,2) that
n particles exist in the right well at a time ¢. Indicate which of the lines (solid, dotted, or
dashed-dotted) corresponds to n = 0, 1, and 2 in the figure you have chosen. For this chosen
figure, derive an expression for the period T.

Explain whether there is an overall difference in the time dependences of the probabilities-
Pp(t) (n=0,1,2) between the cases of attractive ([5.3]) and repulsive ([6]) interactions.



Figure 2: Time dependence of P,(t). In each Figure (a)-(e), the solid, dotted, and dashed-dotted

lines correspond to either n =0, 1, or 2.



Problem 2

.

Consider the canonical distribution of N identical particles with mass m in a cubic box of side
length L. The reduced Planck constant % is equal to the Planck constant h divided by 27. The
Boltzmann constant is kg. The temperature and the volume of the system are T and V = L3,

respectively. The system obeys the Boltzmann statistics, in which the probability of a particle to

E
have an energy E is proportional to exp(—];—T). Ignore any internal degrees of freedom of the

particles and any relativistic effects. Solve the following problems and show how you derive your
answers. : .

Consider an ideal gas, where the interaction between the particles can be ignored.

[1] Calculate the partition function Z of this system. If neéessary, you may use the following
formula:

[Cewew=va @

—00
- [2] Calculate the internal energy U and the specific heat C of this system.

[3] Derive the equation of state by calculating the pressure P using the folldwing equation:
P=—-— : (2)
where F' is the Helmholtz free energy. .

Now consider that interactions between the particles take placé, which include a long-range attrac-
tive part and a short-range repulsive part. The attractive interaction can be taken into account
by assuming a uniform attractive potential, that is, the energy of one particle can be replaced by

E=2 _ a—, where a is a positive constant and p is the momentum of the particle. Because of

m
short-range repulsive interaction, each particle prohibits other particles from entering into a volume
b centered around it. This exclusion effect can be taken into account by replacing V' with V — Nb.

[4] Calculate the partition function Z of this system. Calculate the pressure P and derive the
equation of state. AR

Next consider A(V) = F(T, N,V )+ PV, a function of V, at a given temperature T and pressure P.
At the volume V that gives local extrema of A(V), the equation of state is satisfied as provided by -
equation (2). Now we define the Gibbs free energy G(T, N, P) at a given temperature and pressure
as the minimum of F(7, N, V) + PV, which is also a function of V:

G(T, N, P) #n%/ih[F(T,N,‘V)JrPV]. E (3)



At a particular temperature T' and pressure P, the function F(T, N, V)+ PV has two equal minima
as shown in the following figure. .-
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Figure 1: F(T,N,V)+ PV as a function of V (solid curve). The dashed line is a guide to the eye.

[5] Which point(s) in Figure 1 at which the equation of state is satisfied is (are) stable in thermal

equilibrium? Which is (are) unstable? Describe the reasoﬁ by considering the sign of W

[6] Draw F(T,N,V)+ PV as a function of V when the pressure P either increases or decreases
from Figure 1 at a constant temperature 7. For both cases explain the physical reason for

the changes by pressure P.

[7] Draw the isothermal curve derived from the equation of state on the P-V plane at this
temperature by considering the behavior of the function F(T, N,V) + PV discussed above.
Draw the isothermal curve of the equilibrium state on the P-V plane, based on the definition

of the Gibbs free energy in equation (3).



Problem 3

Suppose a monochromatic, z-polarized, plane electromaghetic wave with an angular frequency w,
travelling in the +z direction, is incident onto the interface (z = 0) between the vacuum and a
medium with electric conductivity that follows Ohm’s law, as shown in Figure 1. This gives rise -
to a reflected wave and a transmitted wave, of which the latter travels further in the 4z direction. V
In the following, we consider the propagation of this transmitted electromagnetic wave inside the
medium. Suppose that the electric field E (r,t) and the magnetic flux density B (r,t) at position
r and time ¢ inside the medium are governed by the following equations:

0B

o ‘ OF -
VXE:—E’ V-E=0, - VxB=cecu—+ uokE, V-B=0.

ot

Here ¢, u, and o, denoting the electric permittivity, magnetic permeability, and electric conductivity
of the medium, respectively, are all positive and real-valued constants. Then, the wave equations
for the electromagnetic wave propagating in the +z direction inside the medium read as follows:

#B__OE_ OE_ o’B  9*B 0B .

e e A g7 HaE Mo =0 )
Assuming that the electric field of the electromagnetic wave oscillates in the z-direction in the
medium as well, answer the following questions. ’

X
A
Vacuum ;
Propagation
direction
Figure 1

[1] The plane-wave solution of equation (1) is given in the complex form:
E(z,t) =Re [Eg exp {z (I~cz - wt) }} , ' (3)

where Ej is a complex vector and k= k1 + ik is a complex number (k1 and k2 are both real).
Express the phase velocity (the velocity of the wave front) v of the plane wave in equation
(3), using any necessary quantities among ki, k2, and w. '



[2] At a certain travelling distance d from the interface (z = 0), the amplitude of the electric
field has become attenuated to 1/e of its value at the interface (e is the base of the natural
logarithm). Express this characteristic distance d, using any necessary quantities among k1,
ko, and w.

(3] Express k1 and ko using the quantities ¢, u, o, and w.

[4] Show how the distance d, defined in [2], depends on the conductivity o, for the two extreme
cases of large conductivity (¢ > ew) and small conductivity (¢ < ew). ‘

‘ [5] The oscillation of the magnetlc flux density is delayed with respect to that of the electric field
by the phase delay ¢ (0 < ¢ < 27). Express ¢ using any necessary quantities among k1, k2,
and w. Also, calculate the value of ¢ in the limit of large conductivity (_‘f_ — oo) as well as

’ \ew

in the limit of small conductivity (1 — 0).
T \ew

[6] Express the magnitude |(S)| of the time-average (S) of the Poynting vector S=(1/uExB
of the electromagnetlc wave just after penetration (z = 0), using any necessary quantities

among €, , o, w, ¢, and | Ey|.

Recalling that Ohm’s law J (r,t) = oE (r,t), where J (r,t) is the current density, holds in the
medium, answer the following questions.

Y ‘ [7] Express the power Q (r,t) exerted on the medium per unit volume by the electromagnetic
wave with an electric field E (r,t) and a magnetic flux density B (r,t), using any necessary
quantltles among F (r,t), B (r, t), and J (7, t).

+oo : , '
[8] Calculate / (Q (2,t))dz, where (Q (z,t)) denotes the time average of the power Q (z,t)
0 : _

exerted on the medium per unit volume by the electromagnetic. wave considered in [1]-[6],
and show the relation between this result and I )| calculated in [6]. Also, explain what this
relation physically tells.



Problem 4

Consider the electronic state of a two-dimensional crystal with a unit cell length of a, as shown in
Figure 1. The primitive unit vectors are a1 = (v/3a/2, a/2) and az = (—v/3a/2, a/2). Answer the
following questions. ‘ ' ’

[1] Derive the primitive translation vectors b; and by in the reciprocal space (kg, ky), and sketch

- the first Brillouin zone with these vectors. In addition, find the coordinates of the points P

and Q where the first Brillouin zone boundary crosses the axes of k; (> 0) and k, (> 0),
respectively. '

[2] Now consider that the electrons are free by ignoring the periodic potential. Derive the radius
of the Fermi surface, kr, in the case that there are two electrons per unit cell, considering the
spin degrees of freedom. '

[3] Sketch the schematic Fermi surface derived in [2] together with the first Brillouin zone ar-

ranged in an appropriate manner.

Néxt, consider the electronic states of the two-dimensional crystal shown in Figure 2, by taking
~ a periodic potential into account. The two-dimensional crystal contains two atoms of different
species, A and B, in the same unit cell shown in Figure 1. Each atom has three nearest neighbors
at the same distance. The eigen wave function of the electrons, (), in the whole crystal satisfies
the Schrodinger equation, .

Hipio(r) = E(k)yr(r). ‘ (1)
Here, H and E(k) represent the Hamiltonian and the elgenvalue of the system, respectively. k is
the quantum number specifying the eigen state. We shall assume that ¢, (r) can be written as the
sum of the functions contributed by the orbitals of the atoms A, Y (r), and of the atoms B, P8 (r)
with the coefﬁc1ents ,\A and )\ , as follows:

Ce(r) = Mp(r) + ABUR(r). ._ 2).

Yi(r) and Y2 (r) can be expressed by the outermost atomic orbitals of A and B, ¢a(r) and qu(r)
(these are real functions), as follows: ‘

YR = Y explik - r)gatr =), G
UBr) = Y explik - rP)on(r — ) o

Here, r‘f‘ and 7';3 represent the positions for i-th atom A and j-th atom B, respectively. In the
following we neglect all atomic orbitals other than ¢4 (r) and ¢p(r) and neglect interactions between

the electrons as well.

[4] Derive the simultaneous equations with regard to Ay and AR, by calculating [ ¢a(r — r2)Hpy(r)dr _
and [ ¢(r — rB)Hwk (r)dr and so on, and by considering the fact that ¥ (r) satisfies equa-
tion (1). Note that we can neglect all overlap integrals between the atomic orbitals except
those between identical atomic orbitals, '

[ oatr—ryontr = tyir = [ o = rP)pn(r — P =1.



[5]

18]

With regard to the matrix elements of the Hamiltonian H, those between identical atomic.

orbitals can be written as

| /¢A(T_— r?_)HgbA(r — r‘f‘)d’r = €A,

. /¢B(r — r?)’Hd)B(r — 'r]B)dr = ¢g,

(here, we consider the case e > eg), and those between atomic orbitals at different positions

become a nonzero value as,
/¢A(7" - T?)H¢B(T_ - T?)dr ='/¢B(r - r?)quA(r —rNdr =1,
only when a pair of the orbitals belongs to the nearest neighboring atoms of A and B (|r
P = a/V3).

Solve the simultaneous equations derived in [4], and find all energy eigen values E(k) expressed -
as functions of k; and k. ' o

The systeni has a finite energy gap, when a unit cell contains two outermost electrons on

~average. In this case, the wave vector of a highest-energy occupied state (E£7) and that of a

lowest-energy unoccupied state (E3) coincide at a point X on the axis k,. Find the coordinates
of the point X and calculate the energy gap, E; = Ey — Ej.

In the following, let the situation be limited to the case k; = 0.

[7]

8]

Derive the k dependence of E(k) near the point X. Assuming the relatlon E; > |7‘], calculate
the effective mass along ky.

Provided that all B atoms are replaced by A atoms, derive the k, dependence of E(k) near

the point X and calculate Eg.

Figure 1: Two-dimensional lattice. . Figure 2: Two-dimensional crystal consisting of
two kinds of atoms, A and B.



