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GENERAL INSTRUCTIONS

1. Do not look at the Problems until the start of the examination has been announced.

2. Use 3 Answer Sheets and 4 Draft Sheets for the Problem 1. Use 4 Answer Sheets and 4 Draft
Sheets for the Problem 2.

3. Do not use the back faces of the Answer Sheets or the Draft Sheets.

4. Fill in your examinee number in the designated places at the top of all the Answer Sheets

and the Draft Sheets.
5. Answers must be written in Japanese or English.
6. Answers must be marked within the solid frame on the Answer Sheets.

7. Any Answer Sheet with marks or symbols irrelevant to your answers is considered to be

invalid.
8. The Problems are described in Japanese on page 5-9 and in English on page 11-15.

9. Scrolling, expansion and reduction of the Problems are permitted by use of a mouse or other

pointing device only. Keyboard operation is prohibited.

* Show the derivation processes as well as the results.

* Continue the answer even if network trouble occurs.
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Problem 1

Recently, quantum computation based on quantum mechanics attracts much attention. The
energy of quantum systems is defined by the Hamiltonian H. The evolution of the state vector
|1 (t)) with time ¢ is described by the Schrédinger equation. It is given by

. d A
ihay [0 (1) =H[y (1)), (1)

where i is the imaginary number unit, d/d¢ is a differential operator with respect to time, and A is
Planck’s constant divided by 27. We assume an initial condition at time tg as

1 (o)) = [tbo) - (2)

The Pauli matrices are given by

0 1 0 —i 1 0
;. . P . 3

[1] The state vector at time ¢ is written with the use of the time-evolution operator U (t —to),

A

[ (t)) = U (t —to) |vho) - (4)

Express U (t —to) in terms of H when the Hamiltonian is independent of time.

[2] Show that the time-evolution operator U (t — tp) is a unitary operator by using the fact that

the Hamiltonian H is Hermitian.

[3] Show that the inner product of the state vector (¢ ()¢ (¢)) is independent of time based on
the result of Question [2].

First, let us consider one-qubit systems. The one-qubit is described by a two-level system, where
its operation is described by a two-by-two matrix. We take a certain time t = 7 and set {5 = 0 in
the following questions.

[4] Express a matrix representation of U (1) when the Hamiltonian is given by

A~

H = aoc,, (5)
where a is a real number with the dimension of energy.
[5] The phase-shift transformation is a basic operation in quantum computation. It is defined by

qu:(é e(;), )

where ¢ is a real number. Express one matrix representation of the Hamiltonian H that
satisfies U (1) = Uy.
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[6] The NOT transformation is defined by ﬁNOT = ,. Express one matrix representation of the
Hamiltonian H that satisfies U (1) = Uxot.

[7] Express the matrix representation of U/ (1) when the Hamiltonian is given by
H = a|[(sin 6 cos ¢) &, + (sin O sin ¢p) &, + (cos 0) 6,] + bla, (7)
where 6 and ¢ are real numbers, a and b are real numbers with the dimension of energy, and

I, is the two-by-two identity matrix.

[8] The Hadamard transformation is an operator which transforms the Pauli matrices as

UI]_LI&ZUH = &x, ﬁITI&xﬁH = 5’z, (8>

N 1 1 1
n-3(10) .

~

Express one matrix representation of the Hamiltonian H that satisfies U (1) = Ug.

and is explicitly given by

Next, let us consider two-qubit systems, whose operations are described by four-by-four matrices.

[9] The controlled-phase-shift transformation is defined by

100 0

. 010 0

Uc.g = , 10

o 00 1 0 (10)
0 0 0 e

where ¢ is a real number. Express one matrix representation of the Hamiltonian H that
satisfies U (1) = UC_¢. This question is analogous to Question [5], where the matrix is
diagonal although it is a four-by-four matrix.

[10] The controlled-NOT transformation is defined by

1 0 0 O

N 01 0 0

Ucnot = 00 0 1 (11)
0O 01 0

Express one matrix representation of the Hamiltonian H that satisfies U (1) = UcNoT-
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Problem 2

The application of an external force to an elastic body induces deformation. Let @ = (z1,x2,z3)
be an arbitrary position in the elastic body before the deformation. Under the approximation
that the deformation is sufficiently small and the elastic body is viewed as a continuous medium,
the deformation at time ¢ can be expressed by the displacement vector field w(x, t), in which
the displacement vector w is a function of . In the elastic medium before the deformation, let
us consider a hypothetical infinitesimal volume element of rectangular shape centered at x. For
simplicity, suppose that the sides are parallel to the x1-, x2-, and x3-axes of the Cartesian coordinate
system, and let Axy, Axs, and Az be the length of each side of the rectangular volume element,
as shown in Fig. 1. Then, the time-evolution of the displacement vector u of the volume element
obeys the following Newtonian equation of motion:

0u(x,t)

pAx1AxoAxs Bl

= F($,t)A$1A$2A$3, (1)

where p is the mass of the unit volume of the elastic medium, and F'(x, t) is the force per unit

volume acting on the volume element.

Consider the case that the force acting on the volume element, F(x, t)Axz1AxyAxs, is the sum of
the forces that the surrounding elastic medium exerts on each surface of the volume element. Let us
represent “the upper surface” indicated in Fig. 1 as “the surface centered at @'= (z1, x2, x5+ Ax3/2)
with a normal vector toward the positive direction of the xg-axis”; that is, we define a normal vector
toward the direction from the center of a considered volume element to the outside. Then, we define
the stress vector p(3) (',t) as a force per unit area that the neighboring elastic medium exerts on
this surface element. Similarly, p(!) and p® denote the stress vectors acting on the surfaces of
the volume element with normal vectors toward the positive directions of the x1- and zo-axes,

respectively.
)y
P Upper surface
| x'
AN X = (x), Xy, X3)
X RN x'=(x, Xy, X3+ Ax;/2)
1 “e .
[ | X el "_ _
x2 AX3 : ‘\“ Seal . X (xl, x2, .X3 A.X3/2)
X /) _______ L‘\_____‘;-
y "e \‘\
A o ‘\ Axl
AX, Lower surface

Figure 1

[1] Show that the left- and right-hand sides of Eq. (1) have the same dimension.

[2] Regarding the volume element centered at a, show within a few sentences that —p® (z”, 1)
gives the stress vector at “the lower surface” centered at @”= (r1,x2, 23 — Ax3/2) with a
normal vector toward the negative direction of the z3-axis (see Fig. 1).
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[3] Let p§k) and Fj (j, k = 1,2,3) be the components along the z;-axis of p*) and F, respectively.
These quantities satisfy the following relation:

}Wj(:mt) = Z

k=1,2,3

ap\ (x. 1)
ox,

Derive the equation for the case j = 1.

Next, we consider an elastic plane wave propagating in an infinite elastic medium, as an example
for the case that the displacement vector is time ¢ dependent. For simplicity, the elastic properties
are assumed to be isotropic, and thus, the components of the stress vector p¥) (z,t) and the
displacement vector u(x, t) satisfy the following relations, where u,, denotes the x,,-axis component
ofu (m=1,2,3):

1 Oup, (x,t Ouy(x,t .
p§‘k)(m;t) = chjkmn < 85/_ ) + 63(3 )) (]7k7m7n = 17273)7 (2)
Cikmn = AN0jk0mn) + 1(8imOkn + 0jndkm), (3)

where §;;, represents the Kronecker delta and hence
Cijij = AN+20, cijrk =X (G F#Ek), cjrjk = Cjkkj =1 (J # k), Cjkmn = 0 (all other cases).

A and g are positive elastic moduli of the elastic medium, which are independent of x and ¢.

[4] The equation of motion for w(x,t) can also be expressed as follows:
0*u

P o

Express A in terms of g and A while showing the derivation.

= uViu+AV(V -u).

[5] Consider the case that u(x,t) describes an elastic plane wave propagating along the x;-axis.
Obtain the phase velocities of the longitudinal and transverse waves in the isotropic elastic
medium by using p, A, and pu.

Consider a semi-infinite elastic medium and suppose that a transverse elastic plane wave is reflected
by the surface. We define the position of the surface as xo = 0. For simplicity, let us assume that the
elastic wave is accompanied only by a displacement vector within the x1-zo-plane (i.e., us(x,t) = 0)
and the displacement is uniform along the xs-direction (i.e., Qu;/Ox3 = Quy/0x3 = 0). Note that
the surface of the elastic medium is a free boundary and hence p(?) = 0 is satisfied at any arbitrary
position on the surface and at any time. Neglect the possibility that a localized elastic wave near

the surface is excited.

[6] When a transverse elastic plane wave with an angular frequency w; and a wave vector k;
arrives at the surface at a certain incident angle oy (0 < ay < m/2), we observe only a
transverse elastic plane wave as the reflected wave, whose reflection angle, angular frequency,
and wave vector are ay’, wy/, and k', respectively (see the left panel of Fig. 2). By considering
the boundary condition, p?) =0, express o' and wy’ in terms of oy and w;. When we express
the incident and reflected transverse plane waves as wi(x,t) = Re[uy exp(i(ky-x — wet))] and
uy'(x,t) = Re[u'exp(i(ks'-x—wy't))], respectively, note that the displacement at an arbitrary
position including the surface is given by w(x,t) = ui(x,t) + u/(x,t). Rel- -] denotes the

real part of a complex number and 7 represents the imaginary number unit.

14



[7]

8]

Figure 2

By further considering the boundary condition, pgm = 0, find all possible values of the incident

angle oy for which the situation supposed in Question [6] occurs.

When a transverse elastic plane wave arrives at the surface at an arbitrary incident angle
other than the angles derived in Question [7], the reflected waves consist of not only transverse
but also longitudinal elastic plane waves. Let ', w;’, and k;” be the reflection angle, angular
frequency and wave vector of the longitudinal reflected wave, respectively. Then, the reflected
transverse plane wave is expressed as w;’(z,t) = Re[ujo exp(i(k;-x—w;t))] (see the right panel
of Fig. 2). Given that the boundary condition, p® =0, holds when taking into account also
the longitudinal reflected wave, derive the following relation:

. ! . /
kysinoy = k' sin oy’

where k; and k;’ denote the magnitude of k; and k;’, respectively.
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Problem 3

Consider Bose-Einstein condensation of an ideal Bose gas composed of identical particles. Let ¢;
be the 1-particle energy levels (i = 0,1,2,---) with eg(=0) < €1 < e < ---, and let D(e)de be the
number of 1-particle states between the energies € and € + de, where D(e) is the density of states
and de is a small energy increment. Let T" > 0 be the temperature of the system. For simplicity,
set the Boltzmann constant to unity (i.e., kg = 1). We ignore the spin degrees of freedom. Let
m be the mass of the particles and / be the Planck constant divided by 27. Denote the chemical
potential by p < 0. Then, the Bose distribution describing the expectation value of the number of
particles that occupy the 1-particle state 7 is given by

1
fe) = la—m/T _ 1’ (1)

except for the case where p = 0 and ¢; = 0. Answer the following Questions. If needed, use the

0 x1/2 ﬁ 3 00 T 7T2
= — — — 2
/0 L 2C<2>’ /0 o1 =G @)

where ((+) is the zeta function.

integral formulas

[1] Consider the situation that N (> 1) particles are confined in a three-dimensional cubic box
with side length L. Impose periodic boundary conditions on the 1-particle wavefunction in
this box and assume that L is sufficiently large.

[1.1] Express the number of 1-particle energy eigenstates per unit volume of momentum space
in terms of L.

[1.2] Find D(e). (Write down the derivation.)

[1.3] For u < 0, the condition that the total number of particles is N is given by the following
integral equation:

/O " D(e)f(e)de = N. (3)

If the temperature of the system is lower than a critical temperature 7., a chemical
potential that satisfies the above condition (3) and p < 0 does not exist. By calculating
the integral on the left-hand side of Eq. (3) for u = 0, express T, in terms of L and N.

[1.4] Suppose that the temperature T" of the system is lower than T.. Express the number
Ny of particles that occupy the ground state in terms of N, T', and T.. Note that Bose-
Einstein condensation means that a macroscopic number of particles condense in the

ground state and Ny becomes of the order of N.

[1.5] Consider the previous setup but now suppose that the spatial dimension is two. Describe
concisely the reason why Bose-Einstein condensation does not occur in this case. (You
do not need to derive the complete formula of the density of states in two dimensions.)

[2] Consider the case that the spatial dimension is two. We remove the box of the previous
setup and instead assume that N(>> 1) particles are trapped by a two-dimensional harmonic
potential. This potential is isotropic and the 1-particle energy is given by € = hw(n, + ny),
where n, and n, are integers equal to or greater than zero. Here, w > 0 is the angular
frequency and suppose that hw is sufficiently smaller than T'. Note that the zero-point energy
is ignored.



2.1]

2.2]

[2.3]

[2.4]

Find D(e). Suppose that € > hw and only write down the highest order term with
respect to e.

The condition that the total particle number is N is obtained by substituting D(e)
(obtained in Question [2.1]) to Eq. (3). If the temperature of the system is lower than
a critical temperature T, a chemical potential that satisfies the above condition and
i < 0 does not exist. Express T, in terms of w and N.

Consider the adjustment of the potential with which Tt obtained in Question [2.2] does
not diverge and does not go to zero when taking the thermodynamic limit N — oo.
Suppose that the 1-particle potential V is written as

@) -] ©

where & and g are the position operators, Ly has the dimension of length, and Vj does

V=W

not depend on Ly and N. Find the relationship between N and Ly to meet the above-
mentioned condition of the potential adjustment.

Suppose that the temperature T" of the system is lower than T.. Express the number Ny
of particles that occupy the ground state in terms of N, T, and T¢.
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Problem 4

We consider the scattering of an electromagnetic wave by a neutral particle with an electric polar-
izability (> 0) in vacuum. The particle is sufficiently smaller than the wavelength of the incident
electromagnetic wave. The center of the particle is located at the origin O. The incident plane
wave with the angular frequency wgp has an electric field component only parallel to the z axis.
The time-dependent z-component of the electric dipole moment of the particle induced by the in-
cident wave is expressed as p(t) = aFEgcoswot. Ep(> 0) is the amplitude of the electric field of the
incident wave. The radiation from the oscillating electric dipole moment induced by the incident
wave is defined as the scattering wave. Here, ¢g, o and ¢ are the dielectric constant and magnetic

permeability in vacuum, and the speed of light, respectively.

In the following, consider the potential caused by the electric dipole moment of the particle induced
by the incident wave at the point X (position vector r = (rsin 6 cos ¢, rsin 6 sin ¢, r cos 6)), which
is located at a large distance from the particle. The polar coordinates are defined as in Fig. 1. The

unit vectors at the point X are e, = %—7;, ey = %%—Z, ey = rsilnG%' The distance r between the

2m¢ - Suppose

origin O and point X is sufficiently larger than the wavelength of the incident wave o
that the electric dipole moment of the particle is expressed by the electric charges +¢(t) and —q(t)
located at the fixed points 1 and 2 in Fig. 2, respectively. In terms of ¢(t), the z-component of the
electric dipole moment is described as p(t) = ¢(t)l = aEy coswpt, where the distance between the

fixed points 1 and 2 is [. Here, [ is sufficiently smaller than the wavelength of the incident wave.

X
z
€r
X e¢,
6 ,’| Ty
1
-\'/' : €p - [
S E, Point 1
R (+q(®))
O v Ll g
>~ 1 l/z O
¢ \\\I y
. U2y /
Point 2
X (—q(t)) Neutral
. ; particle
Figure 1 Figure 2

As shown in Fig. 2, the distances from the points 1 and 2 to point X are ry and r_, respectively.
The retarded scalar potential ¢ in Lorentz gauge condition is described as
et =) 1 —at-0) 1

t) = el —. 1
o(r,t) dreg Ty * dmeg  T_ (1)

In the following Questions [1]-[6], assume that the electric polarizability is a time-independent

constant given as a = ag.

[1] First, consider the particle in the static field Ey(wo = 0) without retardation. On the condi-
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tions that | < r, the scalar potential in Eq. (1) is approximated by

agFEqycost 1 1
el NG PR Bl O
#(r) 4meg { r + r2}

Ignoring the second and higher order terms of %, calculate C and D.

[2] In Questions [2]-[7], consider the scattering of the electromagnetic field with finite angular
frequency wg # 0 satisfying wgl < c¢. The scalar potential with retardation in Eq. (1) is

agFEycosf 1 1

approximated by

wol

2 express I and G by using r, ¢, wo,

Ignoring the second and higher order terms of % and
and t.

[3] At the point X, the vector potential A(r,t) including the retardation is described as follows,

1 dp(t—1%)
e

A(r,t) = .
(r;?) dmegc?r  dt

Describe the vector potential A(r,t) at point X induced by the oscillating electric dipole
moment of the particle, by using «g, r and the unit vectors of the polar coordinates. The e,

is a unit vector along the z direction.

Consider the electric field and magnetic flux density at point X. Considering the propagation of
the wave to large distances from the particle, we take into account the terms with % and ignore the
terms with % in the potential obtained in Question [2]. In Questions [4] and [5], ignore the terms

7.2
of r% in the calculation.

[4] Describe V(r,t), in which ¢(r,t) is the scalar potential obtained in Question [2], at point
X by using the unit vectors of the polar coordinates. You may use the following equation for
an arbitrary function f,
af 10f 1 of

Vf=—— - — ——e,.

/ 8rer+r8969+rsin98¢e¢
[5] Describe the electric field E and magnetic flux density B at point X by using the unit vectors
of the polar coordinates. Here, the time-dependent electric field E and magnetic flux density

B are expressed by

A
E:—Vgo—aa—t, B =V x A.

You may use the following formula for an arbitrary vector F' = Fr.e, + Fpeq + Fyey,

V x F =

1 8 . 1 0F 1 9F 190 10 19F,
<rsin900(8m9F¢) B rsmeags> e?‘+<rsme 56 Tar(TFQS)) ‘39*(7«@7«(%) Y ) €
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[6]

Describe the Poynting vector S, which expresses the energy flux of the electromagnetic wave
scattered from the particle, at the point X by using the unit vectors of the polar coordinates.
Here, the Poynting vector is expressed as

1
S=—FxB.
Ho
Draw the shapes of the amplitude of the Poynting vector |S| with respect to the horizontal
axes 0 and ¢.

Next, we assume that the electric polarizability « is time-dependent. The oscillations of the
electric polarizability can be induced by vibrations of molecules and lattices. The angular
frequency of the electric polarizability (w,) is smaller than that of the incident wave (wp).
The electric polarizability is described as «(t) = ap + aq coswyt, where g, a1 are constants
specific for the particle. The z-component of the electric dipole moment on the particle is
expressed as p(t) = a(t)Eycoswot. Describe the electric field, which is scattered from the
particle, at point X. Write all angular frequencies of the scattered electromagnetic wave.
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