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invalid.
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• Show the derivation processes as well as the results.
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第1問

近年、量子コンピューターが注目を浴びているが、その基礎原理は量子力学である。量子系のエネ
ルギーはハミルトニアン Ĥ で定義され、時刻 tの状態ベクトル |ψ (t)〉に対するシュレーディンガー
方程式は

i�
d
dt

|ψ (t)〉 = Ĥ |ψ (t)〉 (1)

で与えられる。ここで iは虚数単位、d/dtは時間に関する微分、Ĥ は系を記述するハミルトニアン、
�はプランク定数を 2πで割ったものである。時刻 t0における初期条件を

|ψ (t0)〉 = |ψ0〉 (2)

とする。また、パウリ行列を

σ̂x =

(
0 1
1 0

)
, σ̂y =

(
0 −i

i 0

)
, σ̂z =

(
1 0
0 −1

)
(3)

とする。

[1] 時刻 tにおける状態ベクトルは、時間発展演算子 Û (t − t0)を用いて

|ψ (t)〉 = Û (t − t0) |ψ0〉 (4)

と書くことができる。ハミルトニアンが時間に依存しない場合に Û (t − t0)を Ĥを用いて表せ。

[2] ハミルトニアン Ĥ がエルミートであることから時間発展演算子 Û (t − t0)がユニタリー演算子
であることを示せ。

[3] 設問 [2]の結果を用いて状態ベクトルの内積 〈ψ (t) |ψ (t)〉 は時間に依存しないことを示せ。

まず、1量子ビット系について考える。1量子ビットは 2準位系で記述され、その演算は 2行 2列の
行列で記述できる。以下では、ある時刻 t = τ で考え、t0 = 0とおく。

[4] ハミルトニアンが
Ĥ = aσ̂z (5)

で与えられるとき、Û (τ)を行列表示で求めよ。ここに、aはエネルギーの次元を持つ実数で
ある。

[5] 量子コンピューターにおける基本的な演算として、位相シフト変換がある。これは φを実数と
して

Ûφ =

(
1 0
0 eiφ

)
(6)

で与えられる。Û (τ) = Ûφを与えるハミルトニアン Ĥ を行列表示で一つ求めよ。
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[6] NOT変換は ÛNOT = σ̂xで与えられる。Û (τ) = ÛNOTを与えるハミルトニアン Ĥ を行列表示
で一つ求めよ。

[7] ハミルトニアンが

Ĥ = a [(sin θ cos φ) σ̂x + (sin θ sinφ) σ̂y + (cos θ) σ̂z] + bÎ2 (7)

で与えられるとき、Û (τ)を行列表示で求めよ。ここに、θと φは実数であり、aと bはエネル
ギーの次元を持つ実数である。また、Î2は 2行 2列の単位行列である。

[8] アダマール（Hadamard）変換はパウリ行列を

Û †
Hσ̂zÛH = σ̂x, Û †

Hσ̂xÛH = σ̂z (8)

の様に変換する演算であり、具体的には

ÛH =
1√
2

(
1 1
1 −1

)
(9)

で与えられる。Û (τ) = ÛHとなるハミルトニアン Ĥ を行列表示で一つ求めよ。

次に、2量子ビット系について考える。その演算は 4行 4列の行列で記述できる。

[9] 制御位相シフト変換は φを実数として

ÛC-φ =

⎛
⎜⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 eiφ

⎞
⎟⎟⎟⎠ (10)

で与えられる。Û (τ) = ÛC-φを与えるハミルトニアン Ĥ を行列表示で一つ求めよ。4行 4列の
行列であるが、対角行列であることから設問 [5]との類推を用いて計算せよ。

[10] 制御NOT変換は

ÛCNOT =

⎛
⎜⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎟⎟⎠ (11)

で与えられる。Û (τ) = ÛCNOTを与えるハミルトニアン Ĥ を行列表示で一つ求めよ。
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第2問

適当な外力を弾性体に印加すると、弾性体は変形し、変形前の弾性体中における任意の点x = (x1, x2, x3)

は変位する。変位を十分微小とし、かつ弾性体を連続体と見なす近似では、変位ベクトル uを xの
関数とした変位ベクトル場 u(x, t)によって時刻 tにおける変形を表すことができる。変形前の弾性
体において、点xを中心に含む、十分微小な仮想的な直方体を考える。簡単のため、微小直方体の各
辺を直交座標軸 x1, x2, x3軸に沿ってとり、その長さをそれぞれΔx1, Δx2, Δx3とする（図１）。こ
の体積素の変位ベクトル uは下記のニュートンの運動方程式にしたがって時間発展する。

ρΔx1Δx2Δx3
∂2u(x, t)

∂t2
= F (x, t)Δx1Δx2Δx3 (1)

ここで、ρは弾性体の単位体積あたりの質量、F (x, t)はこの体積素に働く単位体積あたりの力である。

この体積素に働く力 F (x, t)Δx1Δx2Δx3が、体積素を取り囲む弾性媒質からこの体積素の各表面に
加わる力の合力である場合を考えよう。ここで、図１に示した体積素の「上面」を、「x3軸の正方向
に法線ベクトルを持ち、位置x′= (x1, x2, x3+Δx3/2)を中心とする表面」としよう（すなわち、法線
ベクトルの向きを着目する体積素から見て外側に向かって定義するものとする）。この微小な面素に、
隣接する弾性媒質が及ぼす単位面積当たりの力（応力）を、応力ベクトル p(3)(x′, t)と表す。同様に、
x1軸、x2軸の正方向に法線ベクトルを持つ体積素表面に対する応力ベクトルは、それぞれ p(1), p(2)

と表される。

x = (x1, x2, x3) 

x' = (x1, x2, x3 +�x3/2) 

x'' = (x1, x2, x3 −�x3/2) 

p(3)(x', t) 

x''

x'

x
x3

x1

x2 �x3

�x1

�x2

図１

[1] 式 (1)の左辺と右辺の次元が一致していることを示せ。

[2] xを中心に含むこの体積素において、x3軸の負方向の法線ベクトルを持ち、
位置x′′= (x1, x2, x3−Δx3/2)を中心とする面素（図１中の「下面」）に働く応力は、−p(3)(x′′, t)
となることを数行以内で説明せよ。

[3] p(k), F の xj軸方向の成分（j, k = 1, 2, 3）を p
(k)
j , Fj とすると、これらは以下の関係を満たす。

Fj(x, t) =
∑

k=1,2,3

∂p
(k)
j (x, t)

∂xk

j = 1の場合について、これを示せ。

変位ベクトルが時刻 tに依存する場合の例として、無限に広がる弾性体中を弾性波が伝搬する場合
を考える。簡単のため、弾性的な性質は等方的とすると、応力ベクトル p(k)(x, t)と変位ベクトル
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u(x, t)の成分の間には以下の関係が成り立つ。ここで、以下の式における umはuの xm軸方向の成
分 (m = 1, 2, 3)を表す。

p
(k)
j (x, t) =

∑
m,n

1

2
cjkmn

(
∂um(x, t)

∂xn
+

∂un(x, t)

∂xm

)
(j, k,m, n = 1, 2, 3) (2)

cjkmn = λ(δjkδmn) + μ(δjmδkn + δjnδkm) (3)

ここで δjk はクロネッカーのデルタを表す。すなわち、

cjjjj = λ+ 2μ, cjjkk = λ (j �= k), cjkjk = cjkkj = μ (j �= k), cjkmn = 0（左記以外の j, k,m, n）

であり、λ, μは x, tによらない弾性率（正の定数）を表す。

[4] 変位ベクトル u(x, t)が満たす運動方程式は下記のように表すことができる。Aを λ, μを用い
て表せ。計算過程も示すこと。

ρ
∂2u

∂t2
= μ∇2u+A∇(∇ · u)

[5] u(x, t)が x1軸方向に伝播する平面波の弾性波を表している場合を考え、この等方弾性体にお
ける縦波平面波と横波平面波の位相速度をそれぞれ定数 ρ, λ, μを用いて表せ。

半無限の弾性体において、横波平面波の弾性波が境界で反射する場合を考える。境界の位置を x2 = 0

とする。簡単のため、弾性波は x1-x2面内にのみ変位しており（u3(x, t) = 0）、変位は x3方向には
一様（∂u1/∂x3 = ∂u2/∂x3 = 0）であるものとする。なお、弾性体の表面は自由端であり、表面上の
任意の位置、任意の時刻において、p(2) = 0を満たす。表面付近に局在した弾性波が励起される可能
性は考えない。

x1

x2

, , , , 

, 

x3

図２

[6] ある特別な角度 αt (0 ≤ αt < π/2)で、角振動数 ωt、波数ベクトル ktの横波平面波の弾性波を
入射したところ、反射波は横波平面波のみであり、その反射角、角振動数、波数ベクトルはそ
れぞれ αt

′, ωt
′, kt

′であった（図２左）。境界条件 p
(2)
1 = 0を考えることにより、αt

′, ωt
′を αt,

ωtを用いてそれぞれ表せ。ここで、横波入射波を ut(x, t) = Re[ut0 exp(i(kt·x− ωtt))]、横波
反射波を ut

′(x, t) = Re[ut0
′exp(i(kt

′·x− ωt
′t))]と置くと、界面を含む任意の位置における変

位は u(x, t) = ut(x, t) + ut
′(x, t)と表せることに留意せよ。なお、Re[· · ·]は複素数の実部、i

は虚数単位を表す。

[7] さらに境界条件 p
(2)
2 = 0を考え、設問 [6]の状況が起こる入射角 αtを全て求めよ。
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[8] 設問 [7]で求めた角度以外の入射角で横波平面波の弾性波を入射すると、反射波は横波平面波の
みならず、縦波平面波の弾性波も伴う。その反射角、角振動数、波数ベクトルをそれぞれ αl

′,
ωl

′, kl
′とすると、縦波反射波は ul

′(x, t) = Re[ul0
′exp(i(kl

′·x− ωl
′t))]と表される（図２右）。

このとき、前述の境界条件 p(2) = 0は縦波の反射弾性波も含めて満たされることに留意し、

kt sinαt = kl
′ sinαl

′

を示せ。ここで kt, kl
′はそれぞれ kt, kl

′の絶対値である。
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Problem 1

Recently, quantum computation based on quantum mechanics attracts much attention. The
energy of quantum systems is defined by the Hamiltonian Ĥ. The evolution of the state vector
|ψ (t)〉 with time t is described by the Schrödinger equation. It is given by

i�
d
dt

|ψ (t)〉 = Ĥ |ψ (t)〉 , (1)

where i is the imaginary number unit, d/dt is a differential operator with respect to time, and � is
Planck’s constant divided by 2π. We assume an initial condition at time t0 as

|ψ (t0)〉 = |ψ0〉 . (2)

The Pauli matrices are given by

σ̂x =

(
0 1
1 0

)
, σ̂y =

(
0 −i

i 0

)
, σ̂z =

(
1 0
0 −1

)
. (3)

[1] The state vector at time t is written with the use of the time-evolution operator Û (t − t0),

|ψ (t)〉 = Û (t − t0) |ψ0〉 . (4)

Express Û (t − t0) in terms of Ĥ when the Hamiltonian is independent of time.

[2] Show that the time-evolution operator Û (t − t0) is a unitary operator by using the fact that
the Hamiltonian Ĥ is Hermitian.

[3] Show that the inner product of the state vector 〈ψ (t) |ψ (t)〉 is independent of time based on
the result of Question [2].

First, let us consider one-qubit systems. The one-qubit is described by a two-level system, where
its operation is described by a two-by-two matrix. We take a certain time t = τ and set t0 = 0 in
the following questions.

[4] Express a matrix representation of Û (τ) when the Hamiltonian is given by

Ĥ = aσ̂z, (5)

where a is a real number with the dimension of energy.

[5] The phase-shift transformation is a basic operation in quantum computation. It is defined by

Ûφ =

(
1 0
0 eiφ

)
, (6)

where φ is a real number. Express one matrix representation of the Hamiltonian Ĥ that
satisfies Û (τ) = Ûφ.
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[6] The NOT transformation is defined by ÛNOT = σ̂x. Express one matrix representation of the
Hamiltonian Ĥ that satisfies Û (τ) = ÛNOT.

[7] Express the matrix representation of Û (τ) when the Hamiltonian is given by

Ĥ = a [(sin θ cos φ) σ̂x + (sin θ sin φ) σ̂y + (cos θ) σ̂z] + bÎ2, (7)

where θ and φ are real numbers, a and b are real numbers with the dimension of energy, and
Î2 is the two-by-two identity matrix.

[8] The Hadamard transformation is an operator which transforms the Pauli matrices as

Û †
Hσ̂zÛH = σ̂x, Û †

Hσ̂xÛH = σ̂z, (8)

and is explicitly given by

ÛH =
1√
2

(
1 1
1 −1

)
. (9)

Express one matrix representation of the Hamiltonian Ĥ that satisfies Û (τ) = ÛH.

Next, let us consider two-qubit systems, whose operations are described by four-by-four matrices.

[9] The controlled-phase-shift transformation is defined by

ÛC-φ =

⎛
⎜⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 eiφ

⎞
⎟⎟⎟⎠ , (10)

where φ is a real number. Express one matrix representation of the Hamiltonian Ĥ that
satisfies Û (τ) = ÛC-φ. This question is analogous to Question [5], where the matrix is
diagonal although it is a four-by-four matrix.

[10] The controlled-NOT transformation is defined by

ÛCNOT =

⎛
⎜⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎟⎟⎠ . (11)

Express one matrix representation of the Hamiltonian Ĥ that satisfies Û (τ) = ÛCNOT.
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Problem 2

The application of an external force to an elastic body induces deformation. Let x = (x1, x2, x3)

be an arbitrary position in the elastic body before the deformation. Under the approximation

that the deformation is sufficiently small and the elastic body is viewed as a continuous medium,

the deformation at time t can be expressed by the displacement vector field u(x, t), in which

the displacement vector u is a function of x. In the elastic medium before the deformation, let

us consider a hypothetical infinitesimal volume element of rectangular shape centered at x. For

simplicity, suppose that the sides are parallel to the x1-, x2-, and x3-axes of the Cartesian coordinate

system, and let Δx1, Δx2, and Δx3 be the length of each side of the rectangular volume element,

as shown in Fig. 1. Then, the time-evolution of the displacement vector u of the volume element

obeys the following Newtonian equation of motion:

ρΔx1Δx2Δx3
∂2u(x, t)

∂t2
= F (x, t)Δx1Δx2Δx3, (1)

where ρ is the mass of the unit volume of the elastic medium, and F (x, t) is the force per unit

volume acting on the volume element.

Consider the case that the force acting on the volume element, F (x, t)Δx1Δx2Δx3, is the sum of

the forces that the surrounding elastic medium exerts on each surface of the volume element. Let us

represent “the upper surface” indicated in Fig. 1 as “the surface centered at x′= (x1, x2, x3+Δx3/2)

with a normal vector toward the positive direction of the x3-axis”; that is, we define a normal vector

toward the direction from the center of a considered volume element to the outside. Then, we define

the stress vector p(3)(x′, t) as a force per unit area that the neighboring elastic medium exerts on

this surface element. Similarly, p(1) and p(2) denote the stress vectors acting on the surfaces of

the volume element with normal vectors toward the positive directions of the x1- and x2-axes,

respectively.

Upper surface

Lower surface

p(3)(x', t) 

x''

x'

x
x3

x1

x2

x = (x1, x2, x3) 

x' = (x1, x2, x3 +�x3/2) 

x'' = (x1, x2, x3 −�x3/2) �x3

�x1

�x2

Figure 1

[1] Show that the left- and right-hand sides of Eq. (1) have the same dimension.

[2] Regarding the volume element centered at x, show within a few sentences that −p(3)(x′′, t)
gives the stress vector at “the lower surface” centered at x′′= (x1, x2, x3 − Δx3/2) with a

normal vector toward the negative direction of the x3-axis (see Fig. 1).
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[3] Let p
(k)
j and Fj (j, k = 1, 2, 3) be the components along the xj-axis of p

(k) and F , respectively.

These quantities satisfy the following relation:

Fj(x, t) =
∑

k=1,2,3

∂p
(k)
j (x, t)

∂xk
.

Derive the equation for the case j = 1.

Next, we consider an elastic plane wave propagating in an infinite elastic medium, as an example

for the case that the displacement vector is time t dependent. For simplicity, the elastic properties

are assumed to be isotropic, and thus, the components of the stress vector p(k)(x, t) and the

displacement vector u(x, t) satisfy the following relations, where um denotes the xm-axis component

of u (m = 1, 2, 3):

p
(k)
j (x, t) =

∑
m,n

1

2
cjkmn

(
∂um(x, t)

∂xn
+

∂un(x, t)

∂xm

)
(j, k,m, n = 1, 2, 3), (2)

cjkmn = λ(δjkδmn) + μ(δjmδkn + δjnδkm), (3)

where δjk represents the Kronecker delta and hence

cjjjj = λ+ 2μ, cjjkk = λ (j �= k), cjkjk = cjkkj = μ (j �= k), cjkmn = 0 (all other cases).

λ and μ are positive elastic moduli of the elastic medium, which are independent of x and t.

[4] The equation of motion for u(x, t) can also be expressed as follows:

ρ
∂2u

∂t2
= μ∇2u+A∇(∇ · u).

Express A in terms of μ and λ while showing the derivation.

[5] Consider the case that u(x, t) describes an elastic plane wave propagating along the x1-axis.

Obtain the phase velocities of the longitudinal and transverse waves in the isotropic elastic

medium by using ρ, λ, and μ.

Consider a semi-infinite elastic medium and suppose that a transverse elastic plane wave is reflected

by the surface. We define the position of the surface as x2 = 0. For simplicity, let us assume that the

elastic wave is accompanied only by a displacement vector within the x1-x2-plane (i.e., u3(x, t) = 0)

and the displacement is uniform along the x3-direction (i.e., ∂u1/∂x3 = ∂u2/∂x3 = 0). Note that

the surface of the elastic medium is a free boundary and hence p(2) = 0 is satisfied at any arbitrary

position on the surface and at any time. Neglect the possibility that a localized elastic wave near

the surface is excited.

[6] When a transverse elastic plane wave with an angular frequency ωt and a wave vector kt

arrives at the surface at a certain incident angle αt (0 ≤ αt < π/2), we observe only a

transverse elastic plane wave as the reflected wave, whose reflection angle, angular frequency,

and wave vector are αt
′, ωt

′, and kt
′, respectively (see the left panel of Fig. 2). By considering

the boundary condition, p
(2)
1 = 0, express αt

′ and ωt
′ in terms of αt and ωt. When we express

the incident and reflected transverse plane waves as ut(x, t) = Re[ut0 exp(i(kt·x−ωtt))] and

ut
′(x, t) = Re[ut0

′exp(i(kt
′·x−ωt

′t))], respectively, note that the displacement at an arbitrary

position including the surface is given by u(x, t) = ut(x, t) + ut
′(x, t). Re[· · ·] denotes the

real part of a complex number and i represents the imaginary number unit.
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x1

x2

, , , , 

, 

x3

Figure 2

[7] By further considering the boundary condition, p
(2)
2 = 0, find all possible values of the incident

angle αt for which the situation supposed in Question [6] occurs.

[8] When a transverse elastic plane wave arrives at the surface at an arbitrary incident angle

other than the angles derived in Question [7], the reflected waves consist of not only transverse

but also longitudinal elastic plane waves. Let αl
′, ωl

′, and kl
′ be the reflection angle, angular

frequency and wave vector of the longitudinal reflected wave, respectively. Then, the reflected

transverse plane wave is expressed as ul
′(x, t) = Re[ul0

′exp(i(kl
′·x−ωl

′t))] (see the right panel
of Fig. 2). Given that the boundary condition, p(2) = 0, holds when taking into account also

the longitudinal reflected wave, derive the following relation:

kt sinαt = kl
′ sinαl

′,

where kt and kl
′ denote the magnitude of kt and kl

′, respectively.
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• Show the derivation processes as well as the results.

• Continue the answer even if network trouble occurs.
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3

1

εi i = 0, 1, 2, · · · ε0(= 0) ≤ ε1 ≤ ε2 ≤ · · ·
ε ε+ dε 1 D(ε)dε D(ε) dε

T > 0 kB = 1

m 2π

� μ ≤ 0 1 i

μ = 0 εi = 0

f(εi) =
1

e(εi−μ)/T − 1
(1)

∫ ∞

0

x1/2

ex − 1
dx =

√
π

2
ζ

(
3

2

)
,

∫ ∞

0

x

ex − 1
dx =

π2

6
(2)

ζ(·)

[1] N(� 1) 3 L

1 L

[1.1] 1 L

[1.2] D(ε)

[1.3] N μ < 0∫ ∞

0
D(ε)f(ε)dε = N (3)

Tc μ ≤ 0

μ = 0 (3)

Tc L N

[1.4] T Tc N0 N T Tc

N0 N

[1.5] 2

2

[2] 2 N(� 1) 2

1

2 0 (nx, ny) ε = �ω(nx+ny)

ω > 0 �ω T

[2.1] D(ε) ε � �ω ε

[2.2] N (3) [2.1] D(ε)

Tc μ ≤ 0

Tc ω N
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[2.3] [2.2] N → ∞ Tc

1

V̂ (x̂, ŷ) L0

V̂ = V0

[(
x̂

L0

)2

+

(
ŷ

L0

)2
]

(4)

N L0 V0 L0 N

[2.4] T Tc N0 N T Tc
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4

α > 0

O z

ω0

z z p(t) = αE0 cosω0t E0(> 0)

ε0, μ0, c

X(

r = (r sin θ cosφ, r sin θ sinφ, r cos θ))

X er = ∂r
∂r eθ = 1

r
∂r
∂θ eφ = 1

r sin θ
∂r
∂φ O

r 2πc
ω0

+q(t) −q(t)

l z q(t)

p(t) = q(t)l = αE0 cosω0t l

X
θ

�

�
�

�
�

�
�

�

��

x

y

z

O

��

X

θ

�

�
�

�
�

�/2

��

��

�/2 

�
�

��	


y

�	
����

�
����x

z

O

r+ r−
X ϕ

ϕ(r, t) =
+q(t− r+

c )

4πε0

1

r+
+

−q(t− r−
c )

4πε0

1

r−
(1)

[1]-[6] α = α0

[1] E0(ω0 = 0) l � r

(1)

ϕ(r) =
α0E0 cos θ

4πε0

{
C · 1

r
+D · 1

r2

}

l
r 2 C D
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[2] [2]-[7] ω0l � c ω0 �= 0

(1)

ϕ(r, t) =
α0E0 cos θ

4πε0

{
F · 1

r
+G · 1

r2

}
l
r ,

ω0l
c 2 F G r, c, ω0, t

[3] X A(r, t)

A(r, t) =
1

4πε0c2r

dp(t− r
c )

dt
ez

X A(r, t)

α0, r ez z

X [2]
1
r

1
r2 ���������

[4][5]
1
r2 ���������

[4] [2] ϕ(r, t) X ∇ϕ(r, t)

f

∇f =
∂f

∂r
er +

1

r

∂f

∂θ
eθ +

1

r sin θ

∂f

∂φ
eφ

[5] X E B

E B

E = −∇ϕ− ∂A

∂t
, B = ∇×A

F = Frer +Fθeθ +Fφeφ

∇× F =(
1

r sin θ

∂

∂θ
(sin θ Fφ)− 1

r sin θ

∂Fθ

∂φ

)
er+

(
1

r sin θ

∂Fr

∂φ
− 1

r

∂

∂r
(rFφ)

)
eθ+

(
1

r

∂

∂r
(rFθ)− 1

r

∂Fr

∂θ

)
eφ

[6] X

S S

S =
1

μ0
E ×B

S |S| θ, φ

[7] α

α ωv

ω0 α(t) = α0 + α1 cosωvt

α0, α1 z

p(t) = α(t)E0 cosω0t X
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Problem 3

Consider Bose-Einstein condensation of an ideal Bose gas composed of identical particles. Let εi

be the 1-particle energy levels (i = 0, 1, 2, · · · ) with ε0(= 0) ≤ ε1 ≤ ε2 ≤ · · · , and let D(ε)dε be the

number of 1-particle states between the energies ε and ε + dε, where D(ε) is the density of states

and dε is a small energy increment. Let T > 0 be the temperature of the system. For simplicity,

set the Boltzmann constant to unity (i.e., kB = 1). We ignore the spin degrees of freedom. Let

m be the mass of the particles and � be the Planck constant divided by 2π. Denote the chemical

potential by μ ≤ 0. Then, the Bose distribution describing the expectation value of the number of

particles that occupy the 1-particle state i is given by

f(εi) =
1

e(εi−μ)/T − 1
, (1)

except for the case where μ = 0 and εi = 0. Answer the following Questions. If needed, use the

integral formulas ∫ ∞

0

x1/2

ex − 1
dx =

√
π

2
ζ

(
3

2

)
,

∫ ∞

0

x

ex − 1
dx =

π2

6
, (2)

where ζ(·) is the zeta function.

[1] Consider the situation that N(� 1) particles are confined in a three-dimensional cubic box

with side length L. Impose periodic boundary conditions on the 1-particle wavefunction in

this box and assume that L is sufficiently large.

[1.1] Express the number of 1-particle energy eigenstates per unit volume of momentum space

in terms of L.

[1.2] Find D(ε). (Write down the derivation.)

[1.3] For μ < 0, the condition that the total number of particles is N is given by the following

integral equation: ∫ ∞

0
D(ε)f(ε)dε = N. (3)

If the temperature of the system is lower than a critical temperature Tc, a chemical

potential that satisfies the above condition (3) and μ ≤ 0 does not exist. By calculating

the integral on the left-hand side of Eq. (3) for μ = 0, express Tc in terms of L and N .

[1.4] Suppose that the temperature T of the system is lower than Tc. Express the number

N0 of particles that occupy the ground state in terms of N , T , and Tc. Note that Bose-

Einstein condensation means that a macroscopic number of particles condense in the

ground state and N0 becomes of the order of N .

[1.5] Consider the previous setup but now suppose that the spatial dimension is two. Describe

concisely the reason why Bose-Einstein condensation does not occur in this case. (You

do not need to derive the complete formula of the density of states in two dimensions.)

[2] Consider the case that the spatial dimension is two. We remove the box of the previous

setup and instead assume that N(� 1) particles are trapped by a two-dimensional harmonic

potential. This potential is isotropic and the 1-particle energy is given by ε = �ω(nx + ny),

where nx and ny are integers equal to or greater than zero. Here, ω > 0 is the angular

frequency and suppose that �ω is sufficiently smaller than T . Note that the zero-point energy

is ignored.

9



[2.1] Find D(ε). Suppose that ε � �ω and only write down the highest order term with

respect to ε.

[2.2] The condition that the total particle number is N is obtained by substituting D(ε)

(obtained in Question [2.1]) to Eq. (3). If the temperature of the system is lower than

a critical temperature Tc, a chemical potential that satisfies the above condition and

μ ≤ 0 does not exist. Express Tc in terms of ω and N .

[2.3] Consider the adjustment of the potential with which Tc obtained in Question [2.2] does

not diverge and does not go to zero when taking the thermodynamic limit N → ∞.

Suppose that the 1-particle potential V̂ is written as

V̂ = V0

[(
x̂

L0

)2

+

(
ŷ

L0

)2
]
, (4)

where x̂ and ŷ are the position operators, L0 has the dimension of length, and V0 does

not depend on L0 and N . Find the relationship between N and L0 to meet the above-

mentioned condition of the potential adjustment.

[2.4] Suppose that the temperature T of the system is lower than Tc. Express the number N0

of particles that occupy the ground state in terms of N , T , and Tc.
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Problem 4

We consider the scattering of an electromagnetic wave by a neutral particle with an electric polar-

izability α(> 0) in vacuum. The particle is sufficiently smaller than the wavelength of the incident

electromagnetic wave. The center of the particle is located at the origin O. The incident plane

wave with the angular frequency ω0 has an electric field component only parallel to the z axis.

The time-dependent z-component of the electric dipole moment of the particle induced by the in-

cident wave is expressed as p(t) = αE0 cosω0t. E0(> 0) is the amplitude of the electric field of the

incident wave. The radiation from the oscillating electric dipole moment induced by the incident

wave is defined as the scattering wave. Here, ε0, μ0 and c are the dielectric constant and magnetic

permeability in vacuum, and the speed of light, respectively.

In the following, consider the potential caused by the electric dipole moment of the particle induced

by the incident wave at the point X (position vector r = (r sin θ cosφ, r sin θ sinφ, r cos θ)), which

is located at a large distance from the particle. The polar coordinates are defined as in Fig. 1. The

unit vectors at the point X are er = ∂r
∂r , eθ = 1

r
∂r
∂θ , eφ = 1

r sin θ
∂r
∂φ . The distance r between the

origin O and point X is sufficiently larger than the wavelength of the incident wave 2πc
ω0

. Suppose

that the electric dipole moment of the particle is expressed by the electric charges +q(t) and −q(t)

located at the fixed points 1 and 2 in Fig. 2, respectively. In terms of q(t), the z-component of the

electric dipole moment is described as p(t) = q(t)l = αE0 cosω0t, where the distance between the

fixed points 1 and 2 is l. Here, l is sufficiently smaller than the wavelength of the incident wave.

X
θ

�

�
�

�
�

�
�

�

Figure 1

x

y

z

O

Point 1

X

θ

�

�
�

�
�

�/2

Figure 2

Point 2

�/2 

�
�

Neutral 

particle

y

�	
����

�
����x

z

O

As shown in Fig. 2, the distances from the points 1 and 2 to point X are r+ and r−, respectively.
The retarded scalar potential ϕ in Lorentz gauge condition is described as

ϕ(r, t) =
+q(t− r+

c )

4πε0

1

r+
+

−q(t− r−
c )

4πε0

1

r−
. (1)

In the following Questions [1]-[6], assume that the electric polarizability is a time-independent

constant given as α = α0.

[1] First, consider the particle in the static field E0(ω0 = 0) without retardation. On the condi-
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tions that l � r, the scalar potential in Eq. (1) is approximated by

ϕ(r) =
α0E0 cos θ

4πε0

{
C · 1

r
+D · 1

r2

}
.

Ignoring the second and higher order terms of l
r , calculate C and D.

[2] In Questions [2]-[7], consider the scattering of the electromagnetic field with finite angular

frequency ω0 �= 0 satisfying ω0l � c. The scalar potential with retardation in Eq. (1) is

approximated by

ϕ(r, t) =
α0E0 cos θ

4πε0

{
F · 1

r
+G · 1

r2

}
.

Ignoring the second and higher order terms of l
r and ω0l

c , express F and G by using r, c, ω0,

and t.

[3] At the point X, the vector potential A(r, t) including the retardation is described as follows,

A(r, t) =
1

4πε0c2r

dp(t− r
c )

dt
ez.

Describe the vector potential A(r, t) at point X induced by the oscillating electric dipole

moment of the particle, by using α0, r and the unit vectors of the polar coordinates. The ez

is a unit vector along the z direction.

Consider the electric field and magnetic flux density at point X. Considering the propagation of

the wave to large distances from the particle, we take into account the terms with 1
r and

������
ignore the

terms with 1
r2

in the potential obtained in Question [2]. In Questions [4] and [5],
�������
ignore the terms

of 1
r2

in the calculation.

[4] Describe ∇ϕ(r, t), in which ϕ(r, t) is the scalar potential obtained in Question [2], at point

X by using the unit vectors of the polar coordinates. You may use the following equation for

an arbitrary function f ,

∇f =
∂f

∂r
er +

1

r

∂f

∂θ
eθ +

1

r sin θ

∂f

∂φ
eφ.

[5] Describe the electric field E and magnetic flux density B at point X by using the unit vectors

of the polar coordinates. Here, the time-dependent electric field E and magnetic flux density

B are expressed by

E = −∇ϕ− ∂A

∂t
, B = ∇×A.

You may use the following formula for an arbitrary vector F = Frer + Fθeθ + Fφeφ,

∇× F =(
1

r sin θ

∂

∂θ
(sin θ Fφ)− 1

r sin θ

∂Fθ

∂φ

)
er+

(
1

r sin θ

∂Fr

∂φ
− 1

r

∂

∂r
(rFφ)

)
eθ+

(
1

r

∂

∂r
(rFθ)− 1

r

∂Fr

∂θ

)
eφ.
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[6] Describe the Poynting vector S, which expresses the energy flux of the electromagnetic wave

scattered from the particle, at the point X by using the unit vectors of the polar coordinates.

Here, the Poynting vector is expressed as

S =
1

μ0
E ×B.

Draw the shapes of the amplitude of the Poynting vector |S| with respect to the horizontal

axes θ and φ.

[7] Next, we assume that the electric polarizability α is time-dependent. The oscillations of the

electric polarizability can be induced by vibrations of molecules and lattices. The angular

frequency of the electric polarizability (ωv) is smaller than that of the incident wave (ω0).

The electric polarizability is described as α(t) = α0 + α1 cosωvt, where α0, α1 are constants

specific for the particle. The z-component of the electric dipole moment on the particle is

expressed as p(t) = α(t)E0 cosω0t. Describe the electric field, which is scattered from the

particle, at point X. Write all angular frequencies of the scattered electromagnetic wave.
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